Issue 21, 2016

Determination and prediction of the magnetic anisotropy of Mn ions

Abstract

This tutorial is dedicated to the investigation of magnetic anisotropy using both electron paramagnetic resonance (EPR) spectroscopy for its experimental determination and quantum chemistry for its theoretical prediction. Such an approach could lead to the definition of magneto-structural correlation essential for the rational design of complexes with targeted magnetic properties or for the identification of unknown reactive metallic species involved in catalysis. To illustrate this combined approach the high spin MnII, MnIII and MnIV ions have been taken as specific examples. The first part deals with the analysis of the EPR experiments as a function of the ions under investigation and the conditions of the measurements, specifically: (i) EPR spectra recorded under high vs. low frequency conditions with respect to magnetic anisotropy, (ii) EPR spectra of non-integer (Kramers) vs. integer (non-Kramers) spin states and (iii) mono- vs. multi-frequency EPR spectra. In the second part, two main quantum chemical approaches, which have proven their capability to predict magnetic anisotropy, are described. More importantly, these calculations give access to the different contributions of zero field splitting, key information for the full understanding of magnetic anisotropy. The last part demonstrates that such a combined experimental and theoretical approach allows for the definition of magneto-structural correlations.

Graphical abstract: Determination and prediction of the magnetic anisotropy of Mn ions

Supplementary files

Article information

Article type
Tutorial Review
Submitted
07 dek 2015
First published
10 avq 2016

Chem. Soc. Rev., 2016,45, 5834-5847

Determination and prediction of the magnetic anisotropy of Mn ions

C. Duboc, Chem. Soc. Rev., 2016, 45, 5834 DOI: 10.1039/C5CS00898K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements