Issue 11, 2019

Point source characterization of per- and polyfluoroalkyl substances (PFASs) and extractable organofluorine (EOF) in freshwater and aquatic invertebrates

Abstract

Major point sources of per- and polyfluoroalkyl substances (PFASs) cause ubiquitous spread of PFASs in the environment. In this study, surface water and aquatic invertebrates at three Swedish sites impacted by PFAS point sources were characterized, using homologue, isomer and extractable organofluorine (EOF) profiling as well as estimation of bioaccumulation factors (BAFs) and mass discharge. Two sites were impacted by fire training (sites A and R) and the third by industrial runoff (site K). Mean Σ25PFASs concentration in water was 1920 ng L−1 at site R (n = 3), which was more than 20- and 10-fold higher than those from sites A and K, respectively. PFOS was the most predominant PFAS in all waters samples, constituting 29–79% of Σ25PFAS concentrations. Several branched isomers were detected and they substantially contributed to concentrations in surface water (e.g. 49–78% of ΣPFOS) and aquatic invertebrates (e.g. 15–28% of ΣPFOS). BAFs in the aquatic invertebrates indicated higher bioaccumulation for long chain PFASs and lower bioaccumulation for branched PFOS isomers compared to linear PFOS. EOF mass balance showed that Σ25target PFASs in water could explain up to 55% of EOF at site R. However, larger proportions of EOF (>92%) remained unknown in water from sites A and K. Mass discharges were for the first time estimated for EOF and revealed that high amounts of EOF (e.g. 8.2 g F day−1 at site A) could be transported by water to recipient water bodies relative to Σ25PFASs (e.g. 0.15 g day−1 at site A). Overall, we showed that composition profiling, BAFs and EOF mass balance can improve the characterization of PFASs around point sources.

Graphical abstract: Point source characterization of per- and polyfluoroalkyl substances (PFASs) and extractable organofluorine (EOF) in freshwater and aquatic invertebrates

Supplementary files

Article information

Article type
Paper
Submitted
07 iyn 2019
Accepted
19 avq 2019
First published
25 sen 2019
This article is Open Access
Creative Commons BY license

Environ. Sci.: Processes Impacts, 2019,21, 1887-1898

Point source characterization of per- and polyfluoroalkyl substances (PFASs) and extractable organofluorine (EOF) in freshwater and aquatic invertebrates

A. Koch, A. Kärrman, L. W. Y. Yeung, M. Jonsson, L. Ahrens and T. Wang, Environ. Sci.: Processes Impacts, 2019, 21, 1887 DOI: 10.1039/C9EM00281B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements