Issue 15, 2019

The biomolecular corona of gold nanoparticles in a controlled microfluidic environment

Abstract

Nanoparticles (NPs) exposed to biological media are coated by proteins and other biomolecules forming a biomolecular corona (BC) on the particle surface. Recent studies have shown that shear stress as that created by laminar fluid flow generates more complex coronas with systematic changes in composition with respect to counterparts formed under static incubation. However, in most studies reported so far, dynamic environments have been produced by peristaltic pumps and comparing experimental results appears challenging. On the other side, generating shear stress by microfluidic devices could help to remove user variability and ensure better reproducibility of experimental data. This study was therefore aimed at exploring formation of NP-BC in a microfluidic environment. To this end, 100 nm gold nanoparticles and human plasma (HP) were used as models for nano-formulation and biological medium. We injected gold nanoparticles and HP in each of the islets of a remote-controlled microfluidic cartridge. Static incubation was used as a reference. BC-decorated NPs were thoroughly characterized by dynamic light scattering (DLS), micro-electrophoresis (ME), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and nano-liquid chromatography tandem mass spectrometry (nano-LC MS/MS). By varying the incubation time from 30 s to 2.5 min we demonstrate that BC is already determined by the earliest exposure time point and does not appreciably evolve in time. DLS and ME results demonstrate that the BC formed in a microfluidic chip is thicker and more negatively charged than its counterpart formed under static incubation. SDS-PAGE and nano-LC MS/MS revealed that the incubation procedure had a major effect on BC composition. As an example, immunoglobulins are the most abundant plasma proteins of the BC generated in a microfluidic environment (relative protein abundance ∼30%), while tissue leakage proteins (relative protein abundance ∼26%) are the most enriched proteins when the BC is formed upon static incubation. Potential implications in emerging biomedical research arenas are discussed.

Graphical abstract: The biomolecular corona of gold nanoparticles in a controlled microfluidic environment

Supplementary files

Article information

Article type
Paper
Submitted
10 apr 2019
Accepted
17 iyn 2019
First published
17 iyn 2019

Lab Chip, 2019,19, 2557-2567

The biomolecular corona of gold nanoparticles in a controlled microfluidic environment

L. Digiacomo, S. Palchetti, F. Giulimondi, D. Pozzi, R. Zenezini Chiozzi, A. L. Capriotti, A. Laganà and G. Caracciolo, Lab Chip, 2019, 19, 2557 DOI: 10.1039/C9LC00341J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements