Issue 38, 2019

Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery

Abstract

The two-dimensional structural features of covalent organic frameworks (COFs) can promote the electrochemical storage of cations like H+, Li+, and Na+ through both faradaic and non-faradaic processes. However, the electrochemical storage of cations like Zn2+ ion is still unexplored although it bears a promising divalent charge. Herein, for the first time, we have utilized hydroquinone linked β-ketoenamine COF acting as a Zn2+ anchor in an aqueous rechargeable zinc ion battery. The charge-storage mechanism comprises of an efficient reversible interlayer interaction of Zn2+ ions with the functional moieties in the adjacent layers of COF (−182.0 kcal mol−1). Notably, due to the well-defined nanopores and structural organization, a constructed full cell, displays a discharge capacity as high as 276 mA h g−1 at a current rate of 125 mA g−1.

Graphical abstract: Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery

Supplementary files

Article information

Article type
Edge Article
Submitted
20 iyn 2019
Accepted
02 avq 2019
First published
06 avq 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 8889-8894

Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery

A. Khayum M, M. Ghosh, V. Vijayakumar, A. Halder, M. Nurhuda, S. Kumar, M. Addicoat, S. Kurungot and R. Banerjee, Chem. Sci., 2019, 10, 8889 DOI: 10.1039/C9SC03052B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements