Issue 33, 2020

W-Doped TiO2 for photothermocatalytic CO2 reduction

Abstract

TiO2 is one of the most widely used photocatalysts and photothermocatalysts. Tailoring their structure and electronic properties is crucial for the design of high-performance TiO2 catalysts. Herein, we report a strategy to significantly enhance the performance of TiO2 in the photothermocatalytic reduction of CO2 by doping high crystalline nano-TiO2 with tungsten. A variety of tungsten doping concentrations ranging from 2% to 10% were tested and they all showed enhanced catalytic activities. The 4% W-doped TiO2 exhibited the highest activity, which was 3.5 times greater than that of the undoped TiO2 reference. Structural characterization of these W-doped TiO2 catalysts indicated that W was successfully doped into the TiO2 lattice at relatively low dopant concentration. Synchrotron X-ray absorption spectroscopy at both the W L3- and Ti K-edges was further used to provide insight into the local structure and bonding properties of the catalysts. It was found that the replacement of Ti with W led to the formation of Ti vacancies in order to maintain the charge neutrality. Consequently, dangling oxygen and oxygen vacancies were produced that acted as catalytically active sites for the CO2 reduction. As the W doping concentration increased from 2% to 4%, more such active sites were generated which thus resulted in the enhancement of the catalytic activity. When the W doping concentration was further increased to 10%, the extra W species that cannot replace the Ti in the lattice aggregated to form WO3. Due to the lower conduction band of WO3, the catalytic O sites were deactivated and CO2 reduction was inhibited. This work presents a useful strategy for the development of highly efficient catalysts for CO2 reduction as well as new insights into the catalytic mechanism in cation-doped TiO2 photothermocatalysis.

Graphical abstract: W-Doped TiO2 for photothermocatalytic CO2 reduction

Supplementary files

Article information

Article type
Paper
Submitted
01 may 2020
Accepted
02 avq 2020
First published
06 avq 2020

Nanoscale, 2020,12, 17245-17252

Author version available

W-Doped TiO2 for photothermocatalytic CO2 reduction

Y. Li, A. G. Walsh, D. Li, D. Do, H. Ma, C. Wang, P. Zhang and X. Zhang, Nanoscale, 2020, 12, 17245 DOI: 10.1039/D0NR03393F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements