Issue 59, 2020

Recent advances in additive manufacturing of engineering thermoplastics: challenges and opportunities

Abstract

There are many limitations within three-dimensional (3D) printing that hinder its adaptation into industries such as biomedical, cosmetic, processing, automotive, aerospace, and electronics. The disadvantages of 3D printing include the inability of parts to function in weight-bearing applications, reduced mechanical performance from anisotropic properties of printed products, and limited intrinsic material performances such as flame retardancy, thermal stability, and/or electrical conductivity. Many of these shortcomings have prevented the adaptation of 3D printing into product development, especially with few novel researched materials being sold commercially. In many cases, high-performance engineering thermoplastics (ET) provide a basis for increased thermal and mechanical performances to address the shortcomings or limitations of both selective laser sintering and extrusion 3D printing. The first strategy to combat these limitations is to fabricate blends or composites. Novel printing materials have been implemented to reduce anisotropic properties and losses in strength. Additives such as flame retardants generate robust materials with V0 flame retardancy ratings, and compatibilizers can improve thermal or dimensional stability. To serve the electronic industry better, the addition of carbon black at only 4 wt%, to an ET matrix has been found to improve the electrical conductivity by five times the magnitude. Surface modifications such as photopolymerization have improved the usability of ET in automotive applications, whereas the dynamic chemical processes increased the biocompatibility of ET for medical device materials. Thermal resistant foam from polyamide 12 and fly ash spheres were researched and fabricated as possible insulation materials for automotive industries. These works and others have not only generated great potential for additive manufacturing technologies, but also provided solutions to critical challenges of 3D printing.

Graphical abstract: Recent advances in additive manufacturing of engineering thermoplastics: challenges and opportunities

Article information

Article type
Review Article
Submitted
01 iyn 2020
Accepted
17 avq 2020
First published
01 okt 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 36058-36089

Recent advances in additive manufacturing of engineering thermoplastics: challenges and opportunities

M. Picard, A. K. Mohanty and M. Misra, RSC Adv., 2020, 10, 36058 DOI: 10.1039/D0RA04857G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements