Overcoming bottlenecks towards complete biocatalytic conversions and complete product recovery

Abstract

Biocatalysis has become an attractive and powerful technology for resource-efficient conversions of starting materials to products because of selectivity, safety, health, environment and sustainability benefits. One of the key success factors for any synthetic method has traditionally been the yield of the product which has been isolated from the reaction mixture after the conversion and purified to the required purity. The conversion economy and the final product recovery, which determine the isolated yield of a product, are therefore also of key importance for biocatalytic processes, from biocatalytic single-step to multi-step reactions and total synthesis. In order to progress towards complete biocatalytic conversions and to aim at completely recovering and isolating the pure product, relevant thermodynamic, kinetic and other constraints leading to incomplete biocatalytic conversions and incomplete product recovery need to be identified and overcome. The methods and tools for overcoming various types of bottlenecks are growing and can provide valuable guidance for selecting the most suitable approaches towards the goal of achieving 100% yield of the isolated pure product for a specific biocatalytic conversion.

Graphical abstract: Overcoming bottlenecks towards complete biocatalytic conversions and complete product recovery

Article information

Article type
Review Article
Submitted
17 iyl 2024
Accepted
08 noy 2024
First published
14 noy 2024
This article is Open Access
Creative Commons BY-NC license

React. Chem. Eng., 2025, Advance Article

Overcoming bottlenecks towards complete biocatalytic conversions and complete product recovery

R. Wohlgemuth, React. Chem. Eng., 2025, Advance Article , DOI: 10.1039/D4RE00349G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements