Issue 9, 2012

What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission

Abstract

In this contribution, we conceptually present a new avenue to construction of molecular functional materials with high performance of circularly polarised luminescence (CPL) in the condensed phase. A molecule (1) containing luminogenic silole and chiral sugar moieties was synthesized and thoroughly characterized. In a solution of 1, no circular dichroism (CD) and fluorescence emission are observed, but upon molecular aggregation, both the CD and fluorescence are simultaneously turned on, showing aggregation-induced CD (AICD) and emission (AIE) effects. The AICD effect is supported by the fact that the molecules readily assemble into right-handed helical nanoribbons and superhelical ropes when aggregated. The AIE effect boosts the fluorescence quantum efficiency (ΦF) by 136 fold (ΦF, ∼0.6% in the solution versus ∼81.3% in the solid state), which surmounts the serious limitations of aggregation-caused quenching effect encountered by conventional luminescent materials. Time-resolved fluorescence study and theoretical calculation from first principles conclude that restriction of the low-frequency intramolecular motions is responsible for the AIE effect. The helical assemblies of 1 prefer to emit right-handed circularly polarised light and display large CPL dissymmetry factors (gem), whose absolute values are in the range of 0.08–0.32 and are two orders of magnitude higher than those of commonly reported organic materials. We demonstrate for the first time the use of a Teflon-based microfluidic technique for fabrication of the fluorescent pattern. This shows the highest gem of −0.32 possibly due to the enhanced assembling order in the confined microchannel environment. The CPL performance was preserved after more than half year storage under ambient conditions, revealing the excellent spectral stability. Computational simulation was performed to interpret how the molecules in the aggregates interact with each other at the molecular level. Our designed molecule represents the desired molecular functional material for generating efficient CPL in the solid state, and the current study shows the best results among the reported organic conjugated molecular systems in terms of emission efficiency, dissymmetry factor, and spectral stability.

Graphical abstract: What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission

Supplementary files

Article information

Article type
Edge Article
Submitted
28 mar 2012
Accepted
06 iyn 2012
First published
13 iyn 2012

Chem. Sci., 2012,3, 2737-2747

What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission

J. Liu, H. Su, L. Meng, Y. Zhao, C. Deng, J. C. Y. Ng, P. Lu, M. Faisal, J. W. Y. Lam, X. Huang, H. Wu, K. S. Wong and B. Z. Tang, Chem. Sci., 2012, 3, 2737 DOI: 10.1039/C2SC20382K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements