Issue 17, 2017

Heterometallic molecular precursors for a lithium–iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition

Abstract

Three heterometallic single-source precursors with a Li : Fe = 1 : 1 ratio for a LiFeO2 oxide material are reported. Heterometallic compounds LiFeL3 (L = tbaoac (1), ptac (2), and acac(3)) have been obtained on a large scale, in nearly quantitative yields by one-step reactions that employ readily available reagents. The heterometallic precursor LiFe(acac)3 (3) with small, symmetric substituents on the ligand (acac = pentane-2,4-dionate), maintains a 1D polymeric structure in the solid state that limits its volatility and prevents solubility in non-coordinating solvents. The application of the unsymmetrical ligands, tbaoac (tert-butyl acetoacetate) and ptac (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate), that exhibit different bridging properties at the two ends of the ligand, allowed us to change the connectivity pattern within the heterometallic assembly. The latter was demonstrated by structural characterization of heterometallic complexes LiFe(tbaoac)3 (1) and LiFe(ptac)3 (2) that consist of discrete heterocyclic tetranuclear molecules Li2Fe2L6. The compounds are highly volatile and exhibit a congruent sublimation character. DART mass spectrometric investigation revealed the presence of heterometallic molecules in the gas phase. The positive mode spectra are dominated by the presence of [M − L]+ peaks (M = Li2Fe2L6). In accord with their discrete molecular structure, complexes 1 and 2 are highly soluble in nearly all common solvents. In order to test the retention of the heterometallic structure in solution, the diamagnetic analog of 1, LiMg(tbaoac)3 (4), has been isolated. Its tetranuclear molecular structure was found to be isomorphous to that of the iron counterpart. 1H and 7Li NMR spectroscopy unambiguously confirmed the presence of heterometallic molecules in solutions of non-coordinating solvents. The heterometallic precursor 1 was shown to exhibit clean thermal decomposition in air that results in phase-pure α-modification of layered oxide LiFeO2, the prospective cathode material for lithium ion batteries.

Graphical abstract: Heterometallic molecular precursors for a lithium–iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition

Supplementary files

Article information

Article type
Paper
Submitted
06 dek 2016
Accepted
13 yan 2017
First published
13 yan 2017

Dalton Trans., 2017,46, 5644-5649

Heterometallic molecular precursors for a lithium–iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition

H. Han, Z. Wei, M. C. Barry, A. S. Filatov and E. V. Dikarev, Dalton Trans., 2017, 46, 5644 DOI: 10.1039/C6DT04602A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements