Issue 3, 2018

Physicochemical properties of air discharge-generated manganese oxide nanoparticles: comparison to welding fumes

Abstract

Exposure to high doses of manganese (Mn) via inhalation, dermal contact or direct consumption can cause adverse health effects. Welding fumes are a major source of manganese containing nanoparticles in occupational settings. Understanding the physicochemical properties of manganese-containing nanoparticles can be a first step in understanding their toxic potential following exposure. In particular, here we compare the size, morphology and Mn oxidation states of Mn oxide nanoparticles generated in the laboratory by arc discharge to those from welding collected in heavy vehicle manufacturing. Fresh nanoparticles collected at the exit of the spark discharge generation chamber consisted of individual or small aggregates of primary particles. These nanoparticles were allowed to age in a chamber to form chain-like aggregates of primary particles with morphologies very similar to those from welding fumes. The primary particles were a mixture of hausmannite (Mn3O4), bixbyite (Mn2O3) and manganosite (MnO) phases, whereas aged samples revealed a more amorphous structure. Both Mn2+ and Mn3+, as in a double valence stoichiometry present in Mn3O4, and Mn3+, as in Mn2O3 and MnOOH, were detected by X-ray photoelectron spectroscopy on the surface of the nanoparticles in the laboratory nanoparticles and welding fumes. Dissolution studies conducted for these two Mn samples (aged and fresh fume) reveal different release kinetics of Mn ions in artificial lysosomal fluid (pH 4.5) and very limited dissolution in Gamble's solution (pH 7.4). Taken together, these data suggest several important considerations for understanding the health effects of welding fumes. First, the method of particle generation affects the crystallinity and phase of the oxide. Second, welding fumes consist of nanoparticles with multiple oxidation states, whether they are amorphous or crystalline, or occur as isolated nanoparticles or agglomerates. Third, although the dissolution behavior depends on the conditions used for nanoparticle generation, the dissolution of Mn oxide nanoparticles in the lysosomal fluid may promote Mn ion translocation into various organs causing toxic effects.

Graphical abstract: Physicochemical properties of air discharge-generated manganese oxide nanoparticles: comparison to welding fumes

Supplementary files

Article information

Article type
Paper
Submitted
06 noy 2017
Accepted
14 yan 2018
First published
15 yan 2018

Environ. Sci.: Nano, 2018,5, 696-707

Physicochemical properties of air discharge-generated manganese oxide nanoparticles: comparison to welding fumes

L. V. Stebounova, N. I. Gonzalez-Pech, T. M. Peters and V. H. Grassian, Environ. Sci.: Nano, 2018, 5, 696 DOI: 10.1039/C7EN01046J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements