Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In this work, mesoporous hollow SiC nanospheres (MHS-SiC) are successfully fabricated via in situ magnesiothermic reduction of mesoporous hollow carbon-silica nanospheres (MHS-SiO2/C), which inherit a unique interconnected network on the shell. The specially designed interpenetrating shell structure provides an accessible interface between Si and C elements in a confined nanospace during magnesiothermic reduction, and thus well-dispersed MHS-SiC nanospheres (∼95 nm in diameter) with interconnected mesoporous shells and high specific surface area (868 m2 gāˆ’1) can be obtained. For practical applications, the obtained MHS-SiC electrode exhibits a high-rate capacitance and long cycling stability for supercapacitors.

Graphical abstract: Spatially confined magnesiothermic reduction induced uniform mesoporous hollow silicon carbide nanospheres for high-performance supercapacitors

Page: ^ Top