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This study employs various machine learning algorithms to model the electrical conductivity and gas

sensing responses of polyaniline/graphene (PANI/Gr) nanocomposites based on a comprehensive

dataset gathered from over 100 references. Artificial neural networks (ANNs) demonstrated superior

predictive accuracy among the models. The investigation delves into identifying and mitigating outliers,

both structural and response-related, showcasing the robustness of the proposed ANN models. The

study emphasizes the critical role of applicability domain (AD) analysis in evaluating model reliability.

Results indicate high accuracy for electrical conductivity (RMSE: 0.408, R2: 0.984) and gas sensing

responses for ammonia, toluene, and benzene gases (RMSE: 0.350, 0.232, and 0.081, R2: 0.967, 0.983,

and 0.976, respectively). Input contribution analysis highlights key parameters influencing performance.

The s-profiles of additives emerge as significant contributors, emphasizing the importance of molecular-

input understanding in machine learning models. These findings contribute to developing high-

performance PANI/Gr nanocomposites with implications for diverse applications like supercapacitors,

gas sensors, and energy storage devices. The study underscores the need for further research to deepen

the understanding of molecular inputs' impact on PANI/Gr system performance, enabling more precise

material design.
1. Introduction

Designing high-performance conducting and multifunctional
nanocomposites is an exciting area of research that has
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garnered signicant attention in recent years.1 Advanced
materials encompass a diverse array of nanostructured mate-
rials, spanning one-dimensional, two-dimensional, and three-
dimensional nanosized congurations, each customizable to
iDepartment of Earth Resources & Environmental Engineering, Hanyang University,

222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
jChemical Engineering Department, College of Engineering, University of Ha'il, P.O.

Box 2440, Ha'il 81441, Saudi Arabia
kChemical Engineering Process Department, National School of Engineers Gabes,

University of Gabes, Gabes 6029, Tunisia
lLaboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS
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showcase distinct and coveted attributes, including electrical
conductivity, mechanical robustness, and sensing prowess. The
resultant nanocomposites emerge as versatile candidates with
widespread applications across various industries, such as
automotive, integrated circuits, sensors, medical devices, and
biomedical. These materials' tunable properties and multifac-
eted applications underscore their signicance and potential
contributions to advancements in diverse technological
domains.2,3 The ability to create materials with customized
properties is of great interest to researchers and industry alike,
as it enables the production of high-performance materials that
can meet specic requirements for a given application.4–6

One of the most promising combinations among nano-
composites is the incorporation of conducting polymers and
carbon-based materials, which has garnered signicant atten-
tion due to their unique combination of properties.7–9 The ease
of processing, ductility, and electrical conductivity of conduct-
ing polymers and the mechanical strength, optical properties,
and sensing capabilities of carbon materials make this combi-
nation highly desirable. Pioneering the domain of conducting
polymers, polyaniline (PANI) stands as a focal point of extensive
investigation due to its remarkable properties. This versatile
polymer has garnered signicant attention for its potential
applications in diverse electronic devices, including batteries,
supercapacitors, and sensors. Its exceptional conductivity and
tunable characteristics make it an attractive candidate for
pushing the boundaries of modern electronic technologies.10–12

In particular, combining PANI with carbonaceous components
within nanocomposites has emerged as an attractive approach
for developing advanced materials due to the unique combi-
nation of their complementary properties. PANI is known for its
exceptional electrical conductivity, high pseudocapacitance,
and impressive resistance to environmental degradation,8,13

while carbonaceous materials, encompassing graphene, carbon
nanotubes, and carbon black, stand out for their remarkable
mechanical strength, expansive surface area, and superior
electrical conductivity. Researchers have signicantly improved
electrochemical performance by combining these materials,
making them ideal candidates for various applications.14,15

Graphene has emerged as a particularly exceptional material
among the varied carbon-based materials due to its excellent
electrical, thermal, and mechanical properties.16,17 Graphene's
low density,18 remarkable specic surface area,19 and strong
electron mobility20 make it an excellent substrate for housing
the active polymer in nanocomposites.21 Since its discovery in
2004 by Geim and Novoselov,22 numerous studies have
attempted to incorporate graphene as a nanoller into PANI to
develop multifunctional-based nanocomposites.

Furthermore, owing to the synergistic interaction of the two
components, dramatic improvements in their properties and
performance may be recognized. Compared to pristine PANI or
graphene alone, these nanocomposites showcase enhanced
thermal, electrical, mechanical, optical, and electrochemical
properties.21,23 However, graphene's potential has been some-
what hindered by its insolubility in aqueous environments and
its propensity to agglomerate, attributed to van der Waals
(VDW) interactions between its sheets. To surmount these
2210 | J. Mater. Chem. A, 2024, 12, 2209–2236
limitations, a series of graphene derivatives, including func-
tionalized graphene, graphene oxide (GO), and reduced gra-
phene oxide (rGO), have emerged as promising nanollers for
polymer nanocomposites.24,25 Numerous investigations have
been carried out to augment the electrical characteristics of
diverse nanocomposites based on PANI/graphene and its
derivatives at ambient conditions, where many parameters
would certainly inuence these properties' performances such
as the synthesis methods, morphologies, component ratios,
doping type, protonation degree, redox state, and temperature,
etc.26 For instance, doped PANI/GO revealed an electrical
conductivity (k) of 10 S cm−1 and a specic capacitance of 531 F
g−1 while for pristine PANI exhibited comparatively lower values
of 2 S cm−1 and 216 F g−1.27 As a result, the improved conduc-
tivity and capacitance of PANI/graphene-based nanocomposites
have paved the path for their wide-ranging applications in
electronic devices, supercapacitors, sensing systems, detectors,
fuel cells, and various other domains.28

Researchers must meticulously control the synthesis and
processing conditions to design high-performance nano-
composites to achieve the desired properties. This involves
optimizing the nanocomposite materials' composition,
morphology, and structure while developing novel techniques
for characterizing their properties at the nanoscale. Predicting
the properties of these materials is crucial, especially given the
almost limitless number of material structures that could exist.
Traditional experimental trial-and-error approaches can be
extremely time-consuming and laborious, requiring the
synthesis and characterization of many samples.29,30 However,
leveraging recent advancements in machine learning (ML)
techniques, structure–property relationships in nanoscale
materials can be discovered more efficiently. It is possible to
train ML models on large datasets of experimental or simulated
materials to estimate the properties of novel materials by
analyzing their structural attributes.

Moreover, interpretable models can help identify the
underlying structural reasons for specic properties, thus
providing researchers with a better understanding of the
materials they are working with.31–33 By integrating ML with
experimental and theoretical approaches, researchers can
accelerate the discovery of new high-performance nano-
composites with tailored properties for specic applications.34

While polymer materials' properties are closely related to the
multiple parameters required for synthesizing and processing
polymers, ML might be very advantageous to polymer research.
Therefore, the capacity to forecast polymer characteristics
before their synthesis will save energy and money in industrial
development, expediting the investigation of structure–property
connections among diverse polymers. This has resulted in the
extensive application of polymers in electrical engineering,
medical technology, and other manufacturing engineering
elds.35,36 Numerous successful endeavors have been under-
taken by scientists to employ machine learning for investigating
polymer synthesis and properties.37 The application of ML in
conjunction with mechanical properties of polymer compos-
ites,38,39 liquid crystal behavior of copolyether,40 thermal
conductivity and dielectric properties,41–44 glass transition,45–47
This journal is © The Royal Society of Chemistry 2024
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melting and degradation temperature, as well as quantum
physical and chemical properties,48–51 has led to signicant
achievement in prediction accuracy.

PANI/graphene-based nanocomposites have risen as up-and-
coming materials due to their distinctive electrical and gas-
sensing properties, rendering them well-suited for diverse
industrial applications. However, developing PANI/graphene-
based nanocomposites with enhanced properties and attain-
ing a comprehensive comprehension of the interconnections
between their properties and constituents necessitates in-depth
analysis. Experimentally investigating every possible combina-
tion of PANI/graphene mixtures is challenging, time-
consuming, and expensive. Hence, establishing prediction
models for PANI/graphene-based nanocomposites' physico-
chemical features is critical. In this context, adopting ML
techniques, particularly Articial Neural Networks (ANNs), is an
efficient and cost-effective alternative. ANNs, with their capacity
to mimic the structure and function of the human brain, have
garnered signicant attention in this domain. ANNs are a type
of ML algorithm capable of identifying patterns in datasets and
making accurate predictions for new data based on these
patterns.

ANNs have demonstrated remarkable success across diverse
elds, effectively addressing material design, optimization, and
process control challenges. By using ANNs, researchers can
build accurate predictive models that can simulate the behavior
of complex systems, such as PANI/graphene-based nano-
composites, with remarkable accuracy and efficiency. This
research aims to thoroughly comprehend the performance
prediction of PANI/graphene-based nanocomposites using
ANNs and demonstrate the potential of this approach for
designing and developing new high-performance nano-
composites. Twelve years of published data on PANI/graphene
nanocomposites were utilized to build databases and create
a data-driven platform to predict the electrical conductivity and
gas sensing response performances of any new PANI/graphene-
based nanocomposite. A comprehensive methodology is
employed utilizing the COSMO-RS-derived s-proles of addi-
tives in the systems as inputs into eight different ML algo-
rithms, including simple linear models such as Multi Linear
regression (MLR), Multiple Non-Linear Regression (MLNR),
Decision Tree (DT), Random Forest (RF), Gradient Boosting
Machine (GBM), k-Nearest Neighbors (k-NN), Support Vector
Regression (SVR), and ANNs. A thorough statistical evaluation
and examination of the molecular space of applicability were
performed to validate the predictive accuracy and robustness of
the developed models.

Furthermore, a bootstrap forest was employed to categorize
PANI/graphene systems based on their inputs, unveiling
insights into the inuences of individual inputs on the
enhancement or reduction of electrical conductivity and gas
sensing response in the nanocomposite systems. This ground-
breaking study introduces pioneering holistic models, show-
casing their proof-of-concept potential that effectively map the
properties of graphene-based nanocomposites. It is also the
rst reported model to predict the electrical conductivity and
gas-sensing response of polyaniline/graphene-based
This journal is © The Royal Society of Chemistry 2024
nanocomposites. The model's outstanding performance
underscores the prospect of this methodological approach in
guiding the design of novel PANI/graphene systems, reduces the
necessity for extensive experimental measurements, leading to
a substantial reduction in the nanocomposite manufacturing
cycle, thereby facilitating the design of tailor-made conducting
nanocomposites for specic applications.
2. Methodologies

This research aims to build a machine-learning technique for
estimating the performance of polyaniline and graphene
nanocomposite systems in high-end applications based on their
electrical and gas sensing properties. The accurate prediction of
the performance of such systems is a signicant and currently
unresolved challenge that involves modeling various processes
occurring at distinct time and length scales. Instead of pursuing
a multi-scale approach, a different strategy focuses on the
conditions that can be imposed on the polyaniline/graphene
systems and accurately predicted. Fig. 1 represents the overall
procedure used for the development of the models. The rst
and foremost step of the methodology involves generating
a comprehensive dataset from published literature sources and
organizing it in a readable format. Subsequently, machine
learning algorithms were evaluated and validated utilizing K-
fold cross-validation. The best model was selected based on its
performance and then further hyper-tuned to improve accuracy.
The nal models were employed to predict the systems'
conductivity, gas-sensing effectiveness, and responsiveness to
various parameters. The methodology will be thoroughly dis-
cussed in the subsequent sections of the manuscript.
2.1. Datasets processing and treatment

One of the key steps in building a machine learning model is
obtaining relevant datasets. To construct the datasets for this
study, a comprehensive search was conducted to gather infor-
mation on synthesis conditions that could affect the effective-
ness of PANI and graphene nanocomposites. This was achieved
by mining all available data published between 2010 and 2023
from credible sources such as Scopus, Google Scholar, and Web
of Science using relevant keywords such as “polyaniline, PANI,
graphene, nanocomposite, and PANI/graphene.” This study's
performance evaluation of novel polyaniline/graphene nano-
composites was based on the collected experimental data. Data
were sourced from tables and gures, while for specic gures
where direct data retrieval proved challenging, a digitized image
tool, in conjunction with the professional soware Origin Lab®
2022b, was employed effectively to ascertain their values.

Furthermore, the resulting experimental data was system-
atically organized into two primary datasets: electrical conduc-
tivity and gas sensing response. The raw data points in each
dataset varied due to the availability of information reported in
the literature, including a sum of 989 data points for electrical
conductivity and 931 data points for gas sensing. Within the
extensive gas sensing dataset, 26 different gases were identied
in the literature, encompassing a range of substances such as
J. Mater. Chem. A, 2024, 12, 2209–2236 | 2211
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Fig. 1 A comprehensive summary of the ML-assisted workflow for developing robust models capable of predicting electrical conductivity and
gas sensing response.
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hydrogen, ammonia, methane, nitrogen dioxide, sulfur dioxide,
hydrogen sulde, carbon dioxide, carbon monoxide, benzene,
toluene, among others. Upon a comprehensive examination of
the gas-specic datapoints, it became evident that ammonia,
benzene, and toluene gases have received considerable atten-
tion in the literature. This is reected in the substantial number
of datapoints associated with these gases, establishing a robust
foundation for comparative analysis with existing research.
Furthermore, the prominence of these gases in real-world
applications underscores their relevance and renders them
meaningful choices for in-depth investigation within the scope
of our study. Furthermore, various parameters, such as the
concentrations of the monomer, oxidant, and doping agents,
the graphene ller's type and loading, the synthesis conditions
(temperature and time), and the operative temperature, were
extracted from each report. The gas sensors' response also
considered the tested gas's type and concentration. The exper-
imental data that met the criteria for analysis was then orga-
nized in Excel, and a percentage distribution was generated to
aid in the examination. The next step in the process was data
cleaning and pretreatment since most unprocessed data sets
contain duplicate or even inaccurate information that can
negatively impact the machine learning model's performance.
All the data points collected for this study were obtained from in
situ polymerization, which involves synthesizing the PANI/Gr
nanocomposites directly on the graphene surface. This
approach simplies the systems and eliminates potential
contamination from external sources, resulting in more reliable
and accurate experimental data. Additionally, this methodology
ensures a higher degree of homogeneity in the resulting nano-
composites. It reduces the variability in the measured proper-
ties, which is crucial for developing robust ML models for
predicting the electrical conductivity and gas sensing response
values. The nal data utilized in this study consisted of 616 data
points of various systems and synthesis conditions for electrical
conductivity and 668 datapoints for gas sensing, with the gas
sensing data further subdivided and analyzed for the presence
2212 | J. Mater. Chem. A, 2024, 12, 2209–2236
of ammonia, benzene, and toluene gases (338, 146, and 122
datapoints, respectively).

The entire dataset is provided in Tables S1 and S2 of the
ESI.† Further, the datasets were converted and used on the
logarithmic scale during training for all property sets used in
the models to aid machine learning. Fig. 2 presents a compre-
hensive summary of the histogram distribution for the
employed datasets, showcasing their frequency counts, aver-
ages, and one-sigma standard deviations. Utilizing a loga-
rithmic scale during model training leads to a more uniform
distribution, effectively mitigating any unbalanced skewness in
the models.
2.2. Input selection

When building an MLmodel, identifying relevant inputs is vital
in ensuring the model's accuracy and effectiveness. To deter-
mine the relevant factors that affect the performance of
polyaniline/graphene systems, a comprehensive literature
review was conducted to identify commonly reported input
parameters. These inputs were then incorporated into the ML
models, considering the design concept of nanocomposites and
experimental operation. As shown in Fig. 3, four sections were
chosen as input descriptors. They are as follows: (1) matrix:
aniline amount, type, and amount of oxidant, volume, and
concentration of the doping agent, and additives, (2) ller:
graphene ller type and loading, (3) synthesis conditions:
temperature and time, and (4) operating conditions: tempera-
ture and gas concentration for the gas sensing response prop-
erties. It is worth noting that some inputs that may affect the
electrical conductivity or gas response were not included in the
datasets as they were either not widely reported in the literature
or not uniformly documented. However, many of the inputs
used in these datasets were categorical, and a short abbrevia-
tion was utilized to incorporate categorical data in the ML
algorithms effectively. This involved assigning numerical values
to the categorical inputs, such as the type of graphene nanoller
and doping agents. The numerical inputs, such as temperature
This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Histogram distribution of the collected datasets utilized for (A) electrical conductivity, (B) ammonia (NH3), (C) toluene (C7H8), and (D)
benzene (C6H6) sensing responses.

Fig. 3 The input selection process for machine learning models of polyaniline/graphene nanocomposites.
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and time, were entered as reported in the literature. A
comprehensive list of numerical and categorical inputs is
shown in Table S3 in the ESI.†

Given the limited number of variations for inputs, including
monomers, oxidants, and graphene llers, incorporating them
as molecular inputs into the model would not signicantly
increase its complexity and result in overtting. However, the
wide range of various additives used in the systems can
dramatically impact the material properties. To properly
account for these impacts, it was crucial to include the additives
as molecular inputs in the model. Utilizing sigma proles
derived from the COSMO-RS offered a powerful method for
characterizing the complex mixture of additives in the system.
This approach accurately describes the mixture and provides
valuable insights into the behavior and properties of the
material under study. This molecular method allows for
a complete examination of the effects of additives on
polyaniline/graphene systems, yielding a clearer understanding
of their inuence on material characteristics and behavior. The
methodology behind the molecular inputs is thoroughly
described in a subsequent section.

In this study, the density functional theory (DFT) computa-
tions were conducted using the DMol3 code, part of the Material
Studio® 2020 soware developed by BIOVIA Corporation. This
code employs localized numerical orbitals as basis functions
and can predict the energy and structure of atoms without any
experimental data inputs.52–55 To improve upon the limitations
of the LDA in accurately predicting bond energies and equilib-
rium distances, the GGA with the PBE method was used to treat
the correlation.56,57 The GGA functional is known for its reliable
numerical behavior and is commonly employed in DFT meth-
odology. The computations were performed using the high-
quality DNP basis set, including hexadecapole for multipolar
expansion. Using a numerical basis set and precise DFT
spherical atomic orbitals to mitigate any potential basis set
superposition effects and enhance the accuracy of the system
description, even for weak bonds. To optimize computational
performance and achieve convergence efficiently, a thermal
smearing of 5 × 10−3 Ha was utilized. Additionally, we set the
density at 0.2 charges and 0.5 spins, respectively, to improve the
overall computational efficiency. These computational
approaches contributed to a more reliable and accurate analysis
of the system under investigation. In addition, for the graphene-
based compounds, we employed specic models to simulate
their structures. The graphene (Gr) model contained 92 atoms
and was adopted from previous studies.58 The model of gra-
phene oxide (GO) consisted of 114 atoms, which include two
epoxy groups (C–O–C), two hydroxyl groups (–OH), and four
carboxyl groups (–COOH).59 For reduced graphene oxide (rGO),
a model of 93 atoms with the charge set at −2, where oxygen
atoms bonded to 2 carbon atoms to represent the C–O–C
group.60 Aer geometry optimization, energy computations
were performed utilizing a conductor-like screening model for
real solvents (COSMO-RS) solvation with a dielectric constant of
78.54, representative of water,61 to generate COSMO les. These
les were subsequently leveraged to calculate sigma proles (s-
proles).
2214 | J. Mater. Chem. A, 2024, 12, 2209–2236
2.3. Machine learning models

This study aimed to identify polyaniline/graphene-based
nanocomposites with high electrical conductivity and gas-
sensing solid capabilities for ammonia, toluene, and benzene.
To achieve this, we evaluated eight different ML algorithms
concurrently (Fig. 4), including simple linear models such as
MLR, MLNR, DT, RF, GBM, k-NN, SVR, and ANN. The details of
these ML algorithms are introduced in more facts in Table 1.

These ML algorithms, including MLR, MLNR, DT, RF, GBM,
K-NN, SVR, and ANN models, were all implanted and directly
programmed using the JMP® statistical soware (version 16).
To optimize the model hyperparameters, we employed several
techniques, including stepwise parameter variation for MLR to
achieve the smallest value of root mean squared error (RMSE),
varying the number of splits between 1 and 100 for DT, using
default settings with 100 trees for RF and GBM; performing k-
NN regression for all k-values of 10; and adjusting the neuron's
number in the rst hidden layer of ANNs between 5 and 25.
Additionally, to further optimize the performance of the ANNs,
we performed further adjustments by varying the conguration
of neurons in the second hidden layer, along with their activa-
tion functions. These renements were accomplished through
a conventional iterative approach, systematically seeking the
most effective settings62 through a seven-level factorial design,
which evaluated 25 two-hidden layer congurations. All other
soware options in JMP® 16 were kept as default.

2.4. Criteria for model evaluation

To analyze the reliability and applicability of the developed ML
models, a k-fold cross-validation technique was employed.74 In
this strategy, the dataset is divided into k = 5 subsets of equal
size, one of which serves as the test set, while the remaining k-1
subsets form the training set, which also includes the validation
set. The primary objective of this technique is to train the model
using different subsets of the data and evaluate its performance
using the held-out test set. By repeating this process k times, we
can estimate the model's performance using data not included
in the specic fold. The nal model is then selected based on
the parameter set that provides the lowest average error across
all k iterations (Fig. 4H). This method effectively prevents
overtting and gives a more thorough assessment of the
models' capacity to adapt to new data.

Moreover, various metrics were employed to assess the
models' reliability. These metrics encompass root mean square
error (RMSE), coefficient of determination (R2), the standard
deviation (ASD), average absolute relative deviation (AARD), and
Mean Absolute Error (MAE), which are determined through eqn
(1)–(5). In these equations, Yexp, Ypred, and �Y are utilized to
denote the target properties' experimental, predicted, and
average values, respectively. The symbol N represents the total
number of data points in the datasets.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1

�
Yexp � Ypred

�2
N

vuuut
(1)
This journal is © The Royal Society of Chemistry 2024
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Fig. 4 Diagrammatic illustration of the ML algorithms used in this study: (A) MLR, (B) MLNR, (C) DT, (D) RF, (E) GBM, (F) k-NN, (G) SVR, and (H)
ANN, based on (I) the k-fold (k = 5) cross-validation protocol.
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R2 ¼ 1�
PN
1

�
Yexp � Ypred

�2
PN
1

�
Yexp � Y

�2 (2)

ASD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
1

�
Ypred � Y

�2
N

vuuut
(3)

AARD ð%Þ ¼ 100

N
�
XN
1

���Ypred � Yexp

���
Yexp

(4)

MAE ¼ 1

N

XN
1

��Yexp � Ypred

�� (5)

Although all of these metrics are generally useful for evalu-
ating model accuracy, it was found that the RMSE is mainly
affected by a small number of highly inaccurate predictions. In
practical applications, such predictions can have signicant
consequences. Therefore, RMSE has been adopted as the
primary metric for quantifying accuracy in this study, in which
the analysis of the current data sets indicates that the RMSE
provides a conservative estimate of the model's performance,
This journal is © The Royal Society of Chemistry 2024
making it a suitable choice for evaluating the accuracy of the
developed models.

2.5. Articial neural network

Upon evaluating the constructed models, the most effective
model, ANN, was chosen for interpretation. The hidden
neurons within layers 1 and 2, denoted as Hn,l and HHn,l

respectively, are mathematically represented by eqn (6) and (7).
The weights between neurons m and n, denoted as Wm,n,l, along
with the biases of neurons (b), are specied in the equations.
The hyperbolic tangent function (tanh) utilized in eqn (6) and
(7) connes the neuron's activation or deactivation values
within the range of [−1, 1]. Ultimately, the ANN model's output
response (ypred) is determined through eqn (8), derived from
eqn (6) and (7).33,75

Hn;l ¼ tanh

 XN
n¼1

ðWm;n;lÞðImÞ þ bn;l

!
(6)

HHn;l ¼ tanh

 XN
n¼1

ðWm;n;lÞðHn;lÞ þ bn;l

!
(7)

Ypred ¼
XN
n¼1

ðWm;n;3ÞðHHn;2Þ þ bn;3 (8)
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Table 1 The machine learning algorithms in this study

Machine learning algorithm Method description Sources

Multi linear regression A widely used technique for predicting an
outcome based on one or more input variables.
It assumes a linear interaction between the
inputs (X) and the output variable (Y)

63 and 64

Multiple non-linear regression A ML technique that accurately models complex
relationships between multiple inputs and an
output variable, allowing for non-linear
behaviors. Through iterative optimization
algorithms, MNLR estimates the model
coefficients, providing a robust tool for process
optimization and control. Compared to MLR,
MNLR can provide more accurate models for
processes with nonlinear behavior

65

Decision tree A straightforward ML method involves
gathering and organizing data into a tree-like
structure. The data is arranged into roots and
nodes, and the technique follows the path of the
nodes that meet specic conditions until the
outcome (represented by a leaf node) is reached

66

Random forest A powerful ML approach that uses multiple
decision trees to make predictions. It uses
bootstrapped samples and random feature
selection to reduce overtting and improve
accuracy. By combining the predictions of
multiple DTs, RF creates a more robust and
accurate model compared to a single DT

64 and 67

Gradient boosting machine A ML algorithm employs a sequence of decision
trees, similar to RF. However, in GBM, each
subsequent tree aims to reduce the residual
errors of the preceding tree

68

k-Nearest neighbors A memory-based method is used for
classication and regression. It is based on the
idea that similar instances tend to have similar
outputs. The k-NN algorithm assigns the class/
value of an observation based on the majority
class/value of its k nearest neighbors. The
number of nearest neighbors (k) is a user-
specied parameter, and a common choice is k
= 5 or k = 10

69 and 70

Support vector regression A ML algorithm creates a boundary that
separates different classes by maximizing the
margin between them. Using the kernel trick, it
can handle non-linear decision boundaries,
making it robust to overtting and valuable. It
efficiently runs high-dimensional data but
requires more computational resources than
other methods like k-NN

68 and 69

Articial neural networks A powerful ML technique inspired by the
structure and function of the human brain, it
consists of layers of interconnected neurons
that process input and make predictions. It is
divided into input, hidden, and output neuron
layers

71–73
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The optimization process during ANN training involved the
implementation of the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm, well-regarded for its efficacy in handling
datasets. To ascertain the suitability of the dataset for training
ANNs, a meticulous evaluation was conducted, considering
factors such as the model's complexity, dimensionality of the
input space, and intrinsic relationships within the data. Despite
2216 | J. Mater. Chem. A, 2024, 12, 2209–2236
the considerable number of data points, we underscored the
signicance of scrutinizing the distribution across training,
validation, and testing sets. To gauge themodel's generalization
performance, we employed appropriate cross-validation tech-
niques, ensuring a robust assessment of the ANN training effi-
ciency. The effectiveness of training ANNs with a specic
number of hidden neurons underwent comprehensive testing
This journal is © The Royal Society of Chemistry 2024
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and cross-validation procedures. This rigorous validation
process guarantees the models' robustness and their ability to
generalize effectively to new, unseen data. For internal valida-
tion, a k-fold of 5 was adopted, and an ANN network learning
rate of 0.10 was set, employing squared penalty optimization
[
P

(Yexp − Ypred)
2] to enhance learning stability. The model

weights were initialized randomly to ensure diversication in
the preliminary state and prevent convergence to local minima.
A maximum of 1000 epochs were carried out throughout the
training process, and early stopping was incorporated to avoid
overtting. The training was stopped if the validation loss did
not improve in consecutive epochs. The model with the lowest
achieved Mean Squared Error (MSE) value was chosen as the
best, while all other settings in JMP 16 Pro® remained at their
default values.

2.6. Applicability domain analysis

To determine the outliers in the datasets and establish the
range of molecules/systems for accurate predictions, an appli-
cability domain (AD) evaluation was conducted. The AD
approach relies on two key specications, namely, the leverage
values hi, and the SDR. The AD range is dened as 0 < hi < h*,
and −3 < SDR < +3. The critical leverage value h* and the
leverage value hi are determined using eqn (9)–(11), respectively.
A matrix represents the input parameters considered for this
study xi of dimensions 1 × D while D is the number of input
parameters. The training data points are represented by
a matrix V of dimensions N × D, where N is the total number of
data points in the datasets, moreover, the superscript “T”
signies the transpose of matrices.76,77

SDR ¼ Ypred � YexpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
m¼1

�
Ypred � Yexp

�2
N

vuuut
(9)

hi = xi(X
TX)−1 × xi

T (10)

h* = 3(D + 1)/N (11)

The William plot is widely used to represent the applicability
domain (AD) visually due to its simplicity.76,78 It involves plot-
ting the SDR versus hi values to determine the AD coverage. The
AD coverage is calculated using the following equation eqn (12),
where Ninside refers the count of data points that lie within the
specied boundaries, while Ntotal represents the total number of
data points considered for analysis.

ADcoverage ¼ Ninside

Ntotal

� 100 (12)

3. Results and discussion
3.1. Database treatment and visualization

To develop accurate ML-based predictionmodels, it is necessary
to visualize and analyze the constructed datasets to investigate
This journal is © The Royal Society of Chemistry 2024
the correlations and structures of each input. The collected
datasets for both electrical conductivity and gas sensing capa-
bilities of PANI/graphene nanocomposites involve several forms
of nanocomposites based on various parameters such as aniline
concentrations, oxidant types and concentrations, graphene
types, and loading, dopant types and concentrations, and
additive types. Including such comprehensive and diverse data
is essential for developing reliable prediction models. The
datasets consist of graphene-based nanollers, including Gr,
GO, and rGO. The commonly used oxidants and dopants for
PANI/graphene nanocomposite fabrication are ammonium
persulphate and hydrochloric acid, respectively. The loading of
graphene varies from 0 to 50 wt%, with most loadings being
between 0.1 and 3 wt%, although exceptional cases of high
loading rates were noticed for GO llers. Moreover, more
information has been gathered about the concentrations of
aniline monomers/oxidants, such as APS or potassium persul-
phate (KPS), which range from 10−3 to 2 M, with the majority of
the concentrations ranging between 0.5 and 1 M. The aniline
monomers/dopants include 9 different doping agents with
concentrations ranging from 0.1 to 10 M, with most concen-
trations of 1 M. We also observed high concentrations of formic
acid as a dopant (10 M), which is not typically applied in
experiments. The additives vary from organic solvents surfac-
tants to nanoparticles, with different concentrations. The
datasets underwent essential preprocessing steps to enhance
the accuracy and reliability of ML models for predicting the
performance of PANI/graphene nanocomposites. These steps
encompassed handling missing data, detecting and removing
outliers, and normalizing data to ensure equitable consider-
ation of each input variable in the analysis. For instance, the
deliberate selection of ammonia, benzene, and toluene as
selected gases in this study was grounded in their prevalence in
industrial and environmental contexts, aligning them closely
with gas-sensing applications. Their distinct chemical proper-
ties permit an exploration of the versatility of polyaniline/
graphene-based nanocomposites across diverse chemical envi-
ronments.79,80 Moreover, the extensive literature on these gases
serves as a robust foundation for comparative analysis,
contributing meaningfully to existing research and advancing
the understanding of gas-sensing materials. The practical
signicance of ammonia, benzene, and toluene in real-world
applications, including environmental monitoring and indus-
trial processes, further justies their selection for in-depth
investigation. While recognizing the importance of other
gases, our focused exploration of ammonia, benzene, and
toluene enables valuable insights into the materials' perfor-
mance within the dened scope and objectives of this study.

Consequently, the application of such preprocessing steps is
crucial for developing accurate prediction models by reducing
noise and improving the reliability of results. The comprehen-
sive information gathered about the inputs forms the basis for
building highly accurate and reliable ML models. Such models
aid in the design and optimization of new and innovative
materials. Thus, the use of advanced visualization and data
preprocessing techniques along with comprehensive datasets is
essential for developing accurate prediction models.
J. Mater. Chem. A, 2024, 12, 2209–2236 | 2217
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3.2. Input selection

Input selection is a critical process that selects the key features
that contribute most to the PANI/graphene systems. As
mentioned earlier, the input variables were chosen based on the
design principles of nanocomposites and the requirements of
experimental operations. Although the number of variations for
inputs, such as monomers, oxidants, and graphene llers, is
limited, incorporating them as molecular inputs into the model
is still essential. This approach ensures that the model's
complexity does not signicantly increase and results in over-
tting. However, using various additives in the systems can
dramatically impact their material properties. Therefore, it is
crucial to include the additives as molecular inputs in the
model to account for these impacts properly. The following
section will analyze the s-proles of some selected additives
and other features. This analysis will better understand the
proportion of each input variable to the PANI/graphene systems'
performance and behavior.

3.2.1. s-proles analysis. The analysis of the additives in
terms of molecular inputs via s-proles offers a comprehensive
understanding of the chemical makeup and behavior of the
polyaniline/graphene systems. This technique provides
a holistic view of the molecular interactions and composition,
offering a more in-depth analysis than other methods. Indeed,
the analysis of the s-proles can provide valuable insights into
the polarization and concentration of specic atoms within the
nanocomposites, which can, in turn, inform their performance.
By examining these proles, we can gain insights into the
distribution and arrangement of the atoms within the nano-
composites, which can be crucial in understanding how they
interact and contribute to the material's properties. Therefore,
this analysis can be a valuable tool in developing and opti-
mizing polyaniline/graphene-based systems. Furthermore, the
observed peaks in the s-proles provide valuable information
concerning the polarity and concentration of specic atoms
within a molecule. Increased peak heights indicate higher
concentrations, while the peak location offers insights into the
corresponding polarity characteristics.81 This analysis helps
identify “polar” molecules, characterized by substantial peaks
at s values exceeding ±0.008 e Å−2.82 In addition, the utilization
of s-proles offers a unique perspective into the relationships
between organic components. Unlike conventional approaches
that primarily focus on atom categories and their correlations,
such as group contribution methodology or molecular nger-
printing, the s-proles comprehensively depict molecules as
assemblies of charged surface segments, offering a quantitative
denition.83 The use of s-proles offers several advantages over
other molecular inputs, including HOMO energy, LUMO
energy, and topological indices. These proles are an intuitive
and easily understandable analysis tool with a robust quantum
chemical foundation. s-proles offer a unique capability to
capture polarizability and asymmetric electron densities arising
from covalent bonds between atoms with differing electroneg-
ativities. These attributes make s-proles particularly valuable
for characterizing non-covalent interactions between molecules
and properties that depend signicantly on intermolecular
2218 | J. Mater. Chem. A, 2024, 12, 2209–2236
interactions,84–86 such as electrical conductivity. By utilizing s-
proles, we can gain valuable insights into the molecular
interactions that govern the behavior of nanocomposite mate-
rials, leading to advancements in material design and applica-
tions in various elds.87 An additional advantage of s-proles
lies in their capability to characterize molecules of varying sizes,
facilitated by their unnormalized histograms comprising 61
points within the s value range of [−0.030, +0.030] e Å−2.47 This
inherent property ensures a consistent number of inputs for
machine and deep learning applications, as it remains unaf-
fected by variations in the molecular structure. Analyzing
additives in the PANI/Gr system using s-proles provides
a comprehensive view of their chemical composition and
behavior. However, simplifying this complexity, even with 61
dimensions of s-proles, may overlook crucial details essential
for a comprehensive system understanding. The decision to
preserve the full complexity of s-proles without reduction
ensures complex details about the diverse contributions of
different additives, aligning with principles of interpretability
and specicity in this analysis. Additionally, reducing dimen-
sionality carries the risk of compromising the ability to distin-
guish between various additive mixtures, a critical
consideration for our comprehensive analysis. Therefore, the
current dimensionality, including 61 dimensions dedicated to
s-proles, is a judicious choice, achieving a balance that
ensures a comprehensive representation of the system. Fig. 5(1)
presents a graphical representation of a series of representative
additives modeled in this study. In addition, the computed
numerical values of the s-Prole of all investigated additives
can be found in Table S4 of the ESI.† The s-proles of key
components, such as the aniline monomer, two oxidants, three
representative graphene llers, and three dopants were also
analyzed and graphically displayed in Fig. 5(2).

Upon observing Fig. 5, it becomes evident that the s-proles
can be classied into three distinct regions, each delineated by
the electrostatic properties of the molecular surface. These
regions are identied as the hydrogen bond donor (HBD) region
(−0.030 < s < −0.008 e Å−2), the non-polar region −0.0075 < s <
+0.008 eÅ−2), and the hydrogen bond acceptor (HBA) region
(+0.008 < s < +0.030 e Å−2).88–90 As depicted in Fig. 5, the HBD,
non-polar, and HBA regions are clearly distinguished using
vertical dashed lines. As described earlier, the peaks in the s-
Prole include more of a measure of the relative concentration
of different atom types within the molecular system, therefore
revealing underlying molecular insights into the behavior of
compounds. The additives used in these systems can vary
greatly, including solvents, inorganic nanoparticles, and
surfactants. Solvents play a key aspect in the preparation and
effectiveness of polyaniline/graphene systems. They serve a dual
purpose as they are employed both for dissolving the polyani-
line and graphene and for doping/dedoping the system, thereby
affecting its conductivity. Additionally, solvents can also serve
as washing agents. The choice of solvent has a major impact on
the properties of the system, including its stability, dispersion,
and conductivity.91 Each of these solvents has unique properties
and characteristics, such as boiling point, solubility, and
polarity, which can affect the properties of the polyaniline/
This journal is © The Royal Society of Chemistry 2024
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Fig. 5 COSMO-RS molecular structures and s-profiles of selected components: (1) various additives (A1–F1), and (2) aniline monomer, two
oxidants, graphene fillers, and three dopants (A2–C2).
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graphene system. In the case of water (H2O), acetone (C3H6O),
and methanol (CH3OH), as shown in Fig. 5A1, The s-Prole
graphs exhibit wide peaks that span across both the HBA and
HBD areas, showing the potential of these solvents to act as
both HBAs and HBDs, this phenomenon is primarily governed
by the concentration and polarization of the partially positive
hydrogen (Hd+) and partially negative oxygen (Od−) atoms in the
molecule, respectively. The sigma prole graphs for xylene
(C8H10), ethylene glycol (C2H6O2), and m-cresol (C7H8O) show
that these solvents also have the potential to act as both HBAs
and HBDs, with distinct peaks and regions in their proles
This journal is © The Royal Society of Chemistry 2024
(Fig. 5B1). The exact nature of these peaks and regions depends
on the specic functional groups in the molecule, includs the –
OH group in ethylene glycol and the phenol group in m-cresol.
Furthermore, dimethyl propylene urea (C6H12N2O), ethyl ether
((C2H5)2O), and dimethylformamide (C3H7NO) reveals small
peaks in the HBA region and minimal or no presence in the
HBD region (Fig. 5C1). The presence of functional groups, such
as amines and ethers, accounts for this observation, for
instance, in the case of C3H7NO, it can be attributed to the
nitrogen (N) atom, which has a relatively high electronegativity,
allowing it to attract electrons and partially negative charges.
J. Mater. Chem. A, 2024, 12, 2209–2236 | 2219
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However, these solvents have a weak HBA ability, suggesting
that they can be classied as intermediate polar with different
solubility properties.

Further, the s-Prole of ethanol (C2H5OH) and glycerol
(C3H8O3) suggest that they can act as both HBAs and HBDs, with
distinctive peaks and regions in their proles determined by the
functional groups in the molecule. On the other hand, chloro-
form (CHCl3) is dominated by a peak close to the HBA region,
which is primarily attributed to the presence of a highly polar-
izable chloroform molecule due to the fact of a highly electro-
negative chlorine (Cl) atom in the molecule Fig. 5D1. This
polarizability enables chloroform to act as an effective HBA,
leading to the observed peak close to the HBA region. Inorganic
nanoparticles are essential in controlling the properties and
behavior of polyaniline/graphene systems, promoting oxidation
and improving the material's conductivity for practical func-
tionality. In terms of their s-proles, as shown in Fig. 5E1, tin
oxide (SnO2), zinc oxide (ZnO), and titanium oxide (TiO2) show
unique peaks and regions in both HBD or HBA regions, which
can inuence the interactions between the polyaniline and
graphene components. For example, due to its excellent
conductivity-promoting properties, SnO2 is a widely used
oxidant in polyaniline/graphene systems. It is a wide bandgap
semiconductor made up of tin and oxygen atoms and is
commonly used in various elds, including catalysis, gas
sensing, and environmental remediation.92 The s-Prole of
SnO2 shows broad peaks in both the HBD and HBA areas,
indicating that it can act as both an HBD and HBA. These peaks
are primarily attributed to hydroxyl groups and oxygen atoms
appearing on the SnO2 surface. The –OH groups can act as
HBDs by donating a hydrogen atom, while the oxygen atoms can
act as HBAs by accepting a hydrogen atom. However, it is
essential to note that these specic characteristics can vary
depending on various factors, such as the nanoparticle
synthesis process, particle size, and crystal structure.93

Moreover, considering surfactant substances as additives in
these systems, it is essential to note that their s-Prole, as
represented by sodium dodecyl sulfate (SDS), sodium cetyl-
trimethylammonium bromide (CTAB), and sorbitan mono-
oleate (SMO), will typically have a larger neutral region,
indicating that they are not likely to participate in hydrogen
bonding interactions with other substances (Fig. 5F1). However,
some HBD or HBA regions may be present, suggesting that
these substances can form weak hydrogen bonds with other
molecules due to their unique molecular structure. However,
they are not typically considered strong HBDs or HBAs.
Surfactant molecules tend to interact more strongly with each
other through hydrophobic and VDW interactions rather than
with H bonding with other molecules, owing to the polar head
groups and nonpolar tails in their molecular structure. Despite
not directly participating in hydrogen bonding interactions,
surfactants are pivotal in improving the dispersion, stability,
and characteristics of polyaniline/graphene nanocomposites,
making them an essential component of these materials.

In the context of the statement provided, the s-proles also
yield signicant insights into these components' molecular
interactions and behavior, which are invaluable contributions
2220 | J. Mater. Chem. A, 2024, 12, 2209–2236
to advancing the eld. The key components analyzed in this
study include an aniline monomer, two oxidants, three repre-
sentative graphene llers, and three dopants (Fig. 5(2)). Even
though these components may not be directly included as
molecular inputs, their s-proles offer a deeper understanding
of their electronic structure and interactions with the
surrounding environment. By analyzing Fig. 5A2, aniline, for
example, can act as an HBD and an HBA. The HBD and HBA
properties of aniline are essential in the polymerization process,
as they allow for hydrogen bond creation between aniline
monomers, which can facilitate the polymerization reaction.
Specically, the density of electrons on the nitrogen atom and
the benzenoid and quinoid unit of aniline can contribute to its
ability to undergo oxidative polymerization with oxidants,
including ammonium persulfate (APS) or potassium persulfate
(KPS). Alternatively, the s-proles of APS and KPS can offer
valuable information on their reactivity and capability to oxidize
aniline monomers.

The electron density on the sulfate groups of these oxidants,
as revealed by their s-proles, can facilitate the H bond creation
with the electron's lone pairs on the aniline nitrogen atom.
Furthermore, the s-proles can indicate the ability of these
oxidants to accept electrons during the oxidation process. In the
case of graphene and its derivatives (Fig. 5B2), s-Prole can give
insight into the interactions between the graphene sheets and
the surrounding solvent or other molecules. For Gr, s-Prole
shows a uniform electron density distribution around the sheet,
with a slight electron density depletion at the edges. This is
because the carbon–carbon bonds in Gr are powerful, and the
electron density is uniformly dispersed over the sheet.

In contrast, GO shows a more signicant variation in elec-
tron density, as the O-containing functional groups on the sheet
surface can create regions of higher or lower electron density.
These functional groups can interact with solvent molecules or
other molecules in solution through hydrogen bonding or other
interactions, which can affect the stability and reactivity of the
GO.94 For rGO shows a decrease in electron density compared to
GO, as the reduction process removes some of the oxygen-
containing functional groups from the sheet surface. This can
lead to a uniform electron density around the sheet, similar to
Gr.95 Doping is a process in which impurities, or dopants, are
intentionally introduced into a material to modify its proper-
ties. Hydrochloric acid (HCl), sulfuric acid (H2SO4), and
perchloric acid (HClO4) are widely recognized and used as
dopants to modify the electronic and structural properties in
the case of the polyaniline/graphene nanocomposite systems.
When examining the s-Prole (Fig. 5C2) of HCl, H2SO4, and
HClO4, it can be observed that there are regions of high electron
density around the sulfur, chlorine, and oxygen atoms. These
regions of high electron density indicate that these atoms have
a partial negative charge and are, therefore, capable of acting as
HBAs. Therefore, these molecules can participate in H-bonding
interactions with suitable donor molecules, which can play
a key function in chemical reactions and the behavior of these
compounds in various applications. Overall, s-proles reveal
important information about the electronic structure and
interactions of key components in conducting polymer
This journal is © The Royal Society of Chemistry 2024
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composites like polyaniline/graphene. This analysis can assist
in designing and enhancing the material properties in wide
variety of applications, including electronics and energy storage
materials. Additionally, accurately predicting the hydrogen
bonding ability of these molecules based on its s-Prole can
also be benecial for gas sensing applications. This can aid in
the discovery and development of gas sensors with improved
sensitivity and selectivity, leading to better detection and
identication of various gases in industrial and environmental
settings.

3.2.2. Input contribution analysis. To understand the
individual inuence of each parameter on the nanocomposites'
performance, the relative contributions of input parameters in
the ML models and their effects on electrical conductivity and
gas sensing responses were thoroughly examined. We utilized
the “predictor screening” tool available in JMP Pro® SAS 16,
incorporating the bootstrap forest approach, to evaluate the
signicance of variables in our predictive model. This approach
involves generating multiple decision trees from different data
subsets and then combining their results to recognize the most
inuential predictors in the model.96 To ascertain the signi-
cance of each feature, the model's accuracy is evaluated aer
removing individual features. The impact of each parameter is
then visually represented in Fig. 6.

To achieve high electrical conductivity and gas sensing
response values, It is essential to understand the inuences of
synthesis and operational conditions and use them to reduce
the generation of undesired properties. For electrical conduc-
tivity (Fig. 6A), the oxidant amount, aniline amount, doping
agent concentration, and operating temperature were the most
critical features, followed by graphene ller type with corre-
sponding loading and synthesis conditions, including temper-
ature and time. This indicates that synthesis and operating
conditions play important roles in the electrical conductivity
property. For instance, According to Zheng et al.,97 PANI's
electrical conductivity increases with the rise in the oxidant
(APS) molar ratio, attributed to higher concentrations of cation
radicals and increased PANI chain length. These factors
contribute to the enhancement of interchain transfer in elec-
trical conductivity. However, an increase in APS concentration
above 0.5 M leads to the production of phenazine, which
reduces the electrical conductivity.98,99 Additionally, Nazari
et al.100 demonstrated that the conductivity of PANI shows an
initial increase with an aniline amount of up to 0.15 M, but it
decreases with further additions of aniline. Moreover, the rise
in PANI particle conductivity with Oxi/Ani ratio can be attrib-
uted to an augmentation in both the crystalline regions and the
doping level of microstructures. Extensive investigations into
the impact of diverse dopants on electrical conductivities have
been conducted, revealing a positive correlation between each
dopant's concentration and PANI's electrical conductivity.101

Signicantly, the electrical conductivity of PANI experiences
a notable decline with increasing the DBSA/Ani ratio, indicating
that the intramolecular mobility of charged species along the
chain exerts a more substantial impact on electrical conduc-
tivity than the intermolecular hopping of charge carriers within
crystalline regions. However, at very high DBSA concentrations
This journal is © The Royal Society of Chemistry 2024
(DBSA/Ani = 3), a more pronounced reduction in conductivity
can be achieved by simultaneously reducing both the doping
level and crystallinity.102 Additionally, the electrical conductivity
of PANI/Gr nanocomposites was evaluated across different
operating temperatures and varying loadings of graphene. The
observed enhancement in conductivity with increasing
temperature can be attributed to thermally-assisted charge
carrier hopping, a characteristic commonly found in disordered
materials. Al-Hartomy et al.103 assessed the electrical conduc-
tivity of PANI–Gr systems at various temperatures and diverse
Gr loadings. Incorporating Gr into the PANI matrix remarkably
enhances the composite's conductivity, attributed to the
synergetic interactions between PANI and Gr phases involving
charge transfer between delocalized P-orbitals. The system's
conductivity demonstrates an increasing trend up to a 6 wt%
content of Gr in PANI, aer which it exhibits a subsequent
decrease.103,104 Moreover, the synthesis time and temperature
can also impact the size and structure of the PANI/Gr nano-
composites, which in turn affect the electrical conductivity.
Longer synthesis times and lower temperatures can lead to
larger and more well-dened PANI/Gr systems, typically exhib-
iting higher electrical conductivity. The gas concentration is the
most signicant input affecting all gas sensing properties,
including NH3, C7H8, and C6H6. As gas concentration decreases,
a stepwise reduction trend is observed in the actual sensor
resistance values. Additionally, the sensor's resistance
decreases with rising temperature. Higher gas concentrations
result in gas molecules covering the largest surface area of the
sensor, promoting an increased surface reaction. This, in turn,
leads to higher resistance and a more pronounced response
from the sensor. Conversely, lower gas concentrations result in
fewer gas molecules adsorbing on the sensor's surface, dimin-
ishing surface reactions and reducing the sensor's resistance.105

Additionally, for NH3 gas sensing response (Fig. 6B), the most
critical features contributing to high sensitivity are the dopant
amount and synthesis time. These input variables are followed
by aniline amount, graphene ller type with its corresponding
loading, dopant type, and synthesis temperature. Doping PANI
changes it from an insulator to a conductor, increasing its
sensitivity to gases. This phenomenon arises from the
protonation/deprotonation process of PANI, wherein the intro-
duction of a proton acid stabilizes the regular and output
resistance response curve. Consequently, the system's conduc-
tivity and NH3 adsorption capacity exhibit an increase.106,107 For
instance, during the in situ polymerization of PANI with the
addition of HCl as a dopant, a doping reaction (protonation)
takes place, leading to neutral PANI molecules gaining protons
and forming N+–H bonds. Subsequently, as NH3 molecules
adsorb on the PANI surface and interact with one another, PANI
loses protons and converts into an emeraldine base, resulting in
a sharp increase in resistance (deprotonation) and NH3 trans-
forming into ion (NH4

+).108 According to a previous study, the
response values of ve different samples of 1 wt% PANI/rGO
produced from varying HCl molarities (0.1, 0.5, 1, 1.5, and 2
M) exhibit varying trends, with response values changing with
HCl concentration, particularly at the lowest and highest NH3

concentrations. Response values are observed to decrease on
J. Mater. Chem. A, 2024, 12, 2209–2236 | 2221
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Fig. 6 Relative contribution of input parameters to accuracy (A) electrical conductivity, (B) NH3, (C) C7H8, and (D) C6H6 sensing responsemodels.
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either side of this optimal concentration, which has been found
that 1 wt% PANI/rGO sensors prepared using a 1 M HCl
concentration demonstrate good NH3 response capabilities,
2222 | J. Mater. Chem. A, 2024, 12, 2209–2236
with different sensing response values increasing with
increasing NH3 concentration.109 The introduction of GO in the
PANI/GO system was observed to improve its response values,
This journal is © The Royal Society of Chemistry 2024
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similar to the enhancement observed in electrical conductivity.
The optimal loading of 1 wt% GO resulted in the strongest
response value, reaching 31.2 ± 1.8%.46 Notably, Gr has shown
to play a benecial role in C7H8 and C6H6 gases typically similar
to NH3 sensing measurements which achieved a signicantly
higher maximum response compared to other nanocomposite
samples.110 Several experimental studies have demonstrated
that PANI/Gr-based gas sensors are more suitable for measuring
room temperature gases, as they are less affected by operating
temperatures and maintain reliable gas response sensing
properties.111 Additionally, it should be noted that there is a lack
of experimental data in relation to the inuence of other input
variables on the sensing properties of C7H8 and C6H6 gases
(Fig. 6C and D). Hence, further research is required to
comprehensively understand the behavior of PANI/Gr nano-
composites towards these gases and to identify the crucial input
variables that can be optimized to improve gas sensing prop-
erties. Such studies could facilitate The advancement of more
effective and reliable gas sensors for detecting C7H8 and C6H6,
which are important industrial pollutants. Therefore, in addi-
tion to synthesis and operational conditions, the s-proles of
additives play a pivotal role in predicting the electrical
conductivity and gas sensing responses of PANI/Gr systems.
These additives exert a substantial inuence on both the prep-
aration and performance of nanocomposites. The types of
additives used in PANI/Gr systems can vary greatly, including
solvents, inorganic nanoparticles, or surfactants. Interestingly,
for both electrical conductivity and gas sensing response values,
the nonpolar regions of the additive molecules were observed as
the most signicant inputs. This can be attributed to the fact
that most additives act as solvents (e.g., H2O, C3H6O or CH3OH)
as washing agents to remove any unreacted aniline or other
compounds from the system. This study imparts invaluable
insights into the structural features of PANI/Gr nano-
composites, enabling the optimization of both electrical
conductivity and gas sensing response values. By prioritizing
the signicance of synthesis and operational conditions, along
with additives possessing specic s-Prole features, the design
of new PANI/Gr nanocomposites with exceptional electrical
conductivities and NH3, C7H8, and C6H6 sensing responses
becomes feasible. This approach facilitates the selection of
more focused and efficient PANI/Gr prospects, presenting the
opportunity for the advancement of highly effective gas sensor
technologies.
3.3. ML algorithms analysis

Aer analyzing the input parameters, eight different ML algo-
rithms were utilized to predict the electrical conductivity and
gas sensing responses (NH3, C7H8, and C6H6) of PANI/Gr
nanocomposite systems. These algorithms include MLR,
MLNR, DT, RF, GBM, k-NN, SVR, and ANN, each of which
requires the selection of hyperparameters to ensure optimal
performance.112 These algorithms include MLR, MLNR, DT, RF,
GBM, k-NN, SVR, and ANN, each of which requires the selection
of hyperparameters to ensure optimal performance. These
hyperparameters were determined through train and test sets.
This journal is © The Royal Society of Chemistry 2024
The R2, ASD, and residual error used for evaluation of the
robustness and cognitive ability of each developed ML model.
Table 2 shows the predictive performance of the electrical
conductivity and gas sensing response models trained by the
different ML algorithms. The average R2 from the various
models ranged from 0.616 to 0.998. As shown in Table 2, some
of the developed ML models demonstrated good training
performance for predicting the different properties, while
others did not achieve high accuracy.

To select the best model among the developed ML algo-
rithms, a visualization of their prediction residual errors (RSE)
can be displayed using a violin plot, as shown in Fig. 7. A fatter
plot in the violin plot indicates that the distribution of the
prediction residual errors is more spread out, which suggests
higher variability and potentially larger errors in the model
predictions. Conversely, a thinner plot indicates a more
centralized distribution, which suggests lower variability and
potentially more accurate predictions.

By analyzing Table 2 and Fig. 7, it can be observed that while
MLR is one of the algorithms that were tested, its R2 values for
the test set analysis of electrical conductivity, NH3, C7H8, and
C6H6 models are only 0.881, 0.616, 0.787, and 0.874, respec-
tively. Furthermore, the corresponding ASD of the testing sets is
between 0.2 and 0.5. Based on these results, it can be conrmed
that linear models are unsuitable for accurate electrical
conductivity and gas sensing response prediction, except for
very narrow ranges of conditions where the problem might be
nearly linear.

Furthermore, the nonlinear ML models examined demon-
strated signicantly superior effectiveness to the linear ones.
Based on the evaluation of the different nonlinear models, it
was found that the k-NN, SVR, and ANN models provided lower
ASD values compared to the tree-based and other models.
However, when considering the testing set standard deviations,
the ANN model outperformed the k-NN or SVR models. This,
along with the high R2 value of over 0.98, and the excellent t
demonstrated by the ANNmodel makes it the best candidate for
further hypertuning. Hence, the ANN algorithm was selected for
further optimization.
3.4. ANN hypertuning

3.4.1. Second hidden layer. In recognizing the pivotal role
of hyperparameter optimization experiments for diverse ML
algorithms, we deliberately directed our focus toward ANN
optimization. This deliberate choice stems from the inherent
suitability of ANN in modeling the intricate interactions within
our datasets. The primary objective was to highlight the efficacy
of ANN within the specic context of our study, rather than
embarking on an exhaustive comparison across a diverse array
of algorithms. Numerous studies have delved into the explora-
tion of multiple hidden layers in ANNs, consistently demon-
strating that the incorporation of such layers enhances
prediction accuracy across a wide spectrum of properties.62,113

This underscores the signicance of considering the depth of
ANN architectures to effectively capture and model complex
relationships within datasets—a critical factor in achieving
J. Mater. Chem. A, 2024, 12, 2209–2236 | 2223
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Table 2 Performance evaluation of 8 tuned ML models in train and test sets and optimum key parameters

Electrical conductivity
Ammonia sensing
response

Toluene sensing
response

Benzene sensing
response

R2 ASD (�) R2 ASD (�) R2 ASD (�) R2 ASD (�)

MLR
45 Parameters 37 Parameters 26 Parameters 25 Parameters

Train 0.9166 0.4320 0.7827 0.4692 0.9276 0.2543 0.8872 0.2161
Test 0.8811 0.5069 0.6160 0.5779 0.7872 0.3303 0.8744 0.2693

MNLR
73 Parameters 54 Parameters 37 Parameters 34 Parameters

Train 0.9667 0.2642 0.9231 0.2738 0.9356 0.2361 0.9192 0.1760
Test 0.9538 0.2947 0.8667 0.3387 0.8082 0.3039 0.9102 0.2224

DT
42 Splits 31 Splits 12 Splits 16 Splits

Train 0.9040 0.3781 0.8723 0.3490 0.8085 0.2617 0.9346 0.1682
Test 0.8900 0.3835 0.8107 0.4426 0.6309 0.3013 0.9254 0.1817

RF
94 Trees 81 Trees 70 Trees 73 Trees

Train 0.9528 0.2548 0.9290 0.2476 0.9543 0.1630 0.9511 �0.1679
Test 0.9448 0.2716 0.8908 0.3210 0.8153 0.2403 0.9314 �0.1907

GBM
122 Trees 113 Trees 104 Trees 98 Trees

Train 0.9562 0.2119 0.9061 0.3038 0.9137 0.2529 0.9205 0.1784
Test 0.9477 0.2315 0.8610 0.3736 0.7663 0.3205 0.8899 0.2221

k-NN
3 Neighbors 3 Neighbors 2 Neighbors 2 Neighbors

Train 0.9611 0.2054 0.9693 0.1257 0.9750 0.1275 0.9550 0.1632
Test 0.9525 0.2364 0.9203 0.1731 0.9560 0.1784 0.9245 0.1878

SVR
C = 4.84, g = 0.434 C = 4.40, g = 0.495 C = 4.36, g = 0.423 C = 4.41, g = 0.495

Train 0.9642 0.2282 0.9574 0.1862 0.9685 0.1369 0.9583 0.1156
Test 0.9601 0.2313 0.9275 0.2138 0.9556 0.1451 0.9377 0.1788

ANN
20–20 Neurons 20–10 Neurons 10–10 Neurons 15–5 Neurons

Train 0.9850 0.1064 0.9725 0.1339 0.9877 0.0721 0.9977 0.0346
Test 0.9776 0.1307 0.9444 0.1799 0.9692 0.1166 0.9919 0.0631
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superior predictive performance. The capability of multiple
hidden layers to capture intricate relationships between inputs
and outputs is a key contributing factor to the improved
predictive capabilities of ANNs.

Achieving the optimal network architecture requires metic-
ulous tuning of the number of hidden layers and neurons in
each layer to suit the specic problem under investigation
precisely. To investigate the inuence of the second hidden
layer's neuron count on network performance, we conducted
a seven-level factorial design for both the rst and second
layers, with the number of neurons varying from 5 to 25. This
resulted in 25 different network congurations, with the 5–5
architecture being the simplest and the 25–25 architecture
being the most intricate. Consequently, the results of this study
have been meticulously showcased through the use of contour
maps in Fig. 8, providing a comprehensive and intuitive
representation of the ndings. These maps illustrate the RMSE
2224 | J. Mater. Chem. A, 2024, 12, 2209–2236
of the 25 ANN congurations, based on the training set, for
predicting electrical conductivity and the three gas sensing
response properties.

Fig. 8A shows that the two-layer ANN conguration with 20–
20 neurons best predicted electrical conductivity, with a lower
RMSE in the test set, exhibiting a value of 0.3876 S cm−1.
Regarding the gas sensing response properties, Fig. 8B–D show
that the ANN models with 20–10, 10–10, and 15–5 neurons,
respectively, outperformed other models and had the lowest
RMSE values of 0.3170, 0.1862, and 0.0642% for ammonia,
toluene, and benzene gases, respectively. The presented nd-
ings underscore the promising potential of ANNs in effectively
predicting the electrical conductivity and gas-sensing response
properties of polyaniline-graphene nanocomposites with high
accuracy.

The ndings emphasize the importance of meticulous opti-
mization of neuron count per layer and thoughtful selection of
This journal is © The Royal Society of Chemistry 2024
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Fig. 7 An in-depth assessment of ML model performance on electrical conductivity and sensing response properties for NH3, C7H8, and C6H6

predicted by different ML algorithms. Violin plots visually depict error probability density. Green, blue, red, and purple segments show train set
errors, while gray segments represent test set errors. Box plots within each violin indicate extrema (whisker edges), interquartile range (box
boundaries), and median (white dot) of error.

This journal is © The Royal Society of Chemistry 2024 J. Mater. Chem. A, 2024, 12, 2209–2236 | 2225
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Fig. 8 2D Surface plots representing the RMSE values for all the analyzed ANN architectures in the training set for the (A) electrical conductivity,
(B) NH3, (C) C7H8, and (D) C6H6 sensing response models.
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suitable activation functions when employing ANNs for
predictive modeling. The congurations that demonstrated the
highest accuracy and reliability were the 62–20–20–1, 63–20–10–
1, 63–10–10–1, and 63–15–5–1 ANN congurations, which are
illustrated clearly and concisely in Fig. 9. Table S4† provides
a comprehensive compilation of equations detailing the
weights and biases of individual neurons. Hence, this meth-
odology can signicantly facilitate the rational design and
exploration of innovative multifunctional nanocomposite
systems. These systems can be precisely customized to fulll
specic requirements in diverse applications, including elec-
tronics, sensors, and energy storage.
3.5. Model analysis

3.5.1. Error evaluation. Following the meticulous selection
of the optimal ANN congurations, the models underwent
a rigorous evaluation to assess their performance in predicting
electrical conductivity properties and gas-sensing responses. As
indicated in Table 3, the ANN models exhibited exceptional
accuracy in their predictions of the testing sets, with R2 values of
0.978, 0.944, 0.969, and 0.992 for electrical conductivity,
ammonia, toluene, and benzene gas sensing response, respec-
tively. These high R2 values are a testament to the effectiveness
of the ANN models in capturing the complex relationships
2226 | J. Mater. Chem. A, 2024, 12, 2209–2236
between the input features and target properties of polyaniline-
graphene nanocomposites. However, this accuracy is critical for
advancing our understanding of these materials. It has the
prospect of inuencing the design and implementation of novel
nanocomposites for a broad spectrum of applications.

To validate the performance of the ANNmodels, scatter plots
of the training and testing sets were meticulously examined, as
depicted in Fig. 10. Each joint scheme consists of 5 plots,
including a scatter plot and four marginal distribution plots.
For instance, in Fig. 10A, the gray and green-colored scatter
plots demonstrate the correlation between experimental and
predicted electrical conductivity values in both the training and
testing sets. Additionally, the four marginal distribution plots
on the top and right-hand side offer a comprehensive insight
into the distribution of experimental and predicted values in
their respective sets. The ndings reveal excellent agreement of
the ANN models, with data points mostly aligning along the y =
x diagonal, exhibiting minimal dispersion and scattering. For
the electrical conductivity model, as shown in Fig. 10A, the ANN
model achieved an RMSE of 0.338 and R2 of 0.985 for the train
set and 0.479 and 0.978 for the testing set, respectively.

Similarly, in the case of the ammonia gas model (Fig. 10B),
the ANNmodel achieved RMSE and R2 values of 0.317 and 0.973
for the train set and 0.459 and 0.944 for the testing set,
respectively. For the gas sensing response of toluene and
This journal is © The Royal Society of Chemistry 2024
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Fig. 9 Schematic representation of the hypertuned ANN architectures (62–20–20–1, 63–20–10–1, 63–10–10–1, and 63–15–5–1) for elec-
trical conductivity and gas sensing response prediction models.
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benzene gases, as presented in Fig. 10C and D, the ANN models
achieved higher accuracy, with all data points closely centered
around the perfect tting line and lower RMSE values of 0.193
and 0.064 and higher R2 values, reaching 0.988 and 0.998 for the
train sets and 0.350 and 0.127 and 0.961 and 0.992 for the
testing sets, respectively. These ndings demonstrate the ANN
models' exceptional performance, which suggests the models'
substantial accuracy and reliability in predicting the conduc-
tivity and gas sensing performances of all three gases, including
ammonia, toluene, and benzene.

3.5.2. Input attribution through SHAP analysis. In this
study, the SHapley Additive exPlanations (SHAP) method was
employed to interpret the output of the ANN, a critical step in
validating model performance and unraveling the intricate
processes underlying ANN predictions. As ANNs inherently
possess a ‘black box’ nature due to their complex, non-linear
This journal is © The Royal Society of Chemistry 2024
interactions, understanding the individual inputs' inuence
becomes paramount for ensuring model transparency and
interpretability. SHAP, rooted in game theory, serves as a robust
framework for attributing importance scores to each input
feature concerning specic predictions.114–116

To achieve this, we employed the ‘Kernel Explainer’ method
from the SHAP toolkit in Python, designed to handle intricate
and computationally intensive models like ANNs. This method
utilizes a unique kernel function to compute SHAP values,
allowing an in-depth analysis of the model by approximating
the contribution of each input to the nal prediction. The
primary objective of integrating SHAP was to enhance the
interpretability of the ANN, making its decision-making process
more transparent and understandable.

One signicant advantage of SHAP is its ability to reect the
impact of each input in each sample, showcasing both positive
J. Mater. Chem. A, 2024, 12, 2209–2236 | 2227
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Table 3 Statistical parameters for evaluating the effectiveness of modeled ANNs

Parameter Electrical conductivity
Ammonia sensing
response

Toluene sensing
response

Benzene sensing
response

Training
R2train 0.985 0.973 0.988 0.998
RMSE 0.388 0.317 0.186 0.064
ASD �0.1064 �0.1339 �0.0721 �0.035
MAE 0.1505 0.1893 0.1019 0.0489

Testing
R2test 0.978 0.944 0.969 0.992
RMSE 0.479 0.459 0.358 0.127
ASD �0.1307 �0.1799 �0.1166 �0.0631
MAE 0.1848 0.2544 0.1649 0.0892

Total
R2 0.984 0.967 0.983 0.996
RMSE 0.408 0.350 0.232 0.081
ASD �0.1113 �0.1431 �0.0812 �0.0404
MAE 0.1574 0.2024 0.1148 0.0572

Fig. 10 Scatter plots for the (A) electrical conductivity, (B) NH3, (C) C7H8, and (D) C6H6 sensing response properties, RMSEs, and R2 are indicated
in each plot. The heights of the marginal distributions represent the counts of data points.
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and negative impacts. The SHAP values for each input were then
summarized and ranked based on their mean values, as
depicted in Fig. 11.
2228 | J. Mater. Chem. A, 2024, 12, 2209–2236
The SHAP values for each input are summarized with a bar
char are ranked according to the mean value of SHAP as shown
in Fig. 11. Specically, concerning electrical conductivity
This journal is © The Royal Society of Chemistry 2024
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(Fig. 11A), crucial inputs such as oxidant amount, aniline
amount, doping agent concentration, and operating tempera-
ture emerged as the most critical contributors. Synthesis and
Fig. 11 SHAP input importance to accuracy (A) electrical conductivity, (B

This journal is © The Royal Society of Chemistry 2024
operating conditions played pivotal roles in inuencing elec-
trical conductivity, with varying effects observed for different
input parameters. For instance, aniline amount, oxidant
) NH3, (C) C7H8, and (D) C6H6 Sensing response models.
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amount, Gr ller, HCl doping agent, doping agent concentra-
tion, and synthesis time exhibited a positive impact on elec-
trical conductivity, whereas systems without Gr ller (Gr[/]) and
doping agent, GO ller, dopant volume, and other doping
agents had a negative effect. The inuence of temperature was
also explored, revealing that an increase in synthesis and
operating temperature tended to decrease electrical conduc-
tivity, aligning with both input contribution analysis and
existing literature reports.97–103 Turning to NH3 gas sensing
response ((Fig. 11C), synthesis time and gas concentration
emerged as pivotal inputs positively affecting the sensing
response. Conversely, aniline and oxidant amount, cam-
phorsulfonic acid (C10H16O4S) doping agent, dopant volume,
and operating temperature were identied as inputs exerting
a negative impact on the sensing response. The role of doping
agents in transforming PANI from an insulator to a conductor,
particularly through the protonation/deprotonation process,
was discussed, with the impact on NH3 adsorption capacity
well-established in the literature.106–108 For the prediction of
C7H8 and C6H6 sensing response (Fig. 11C and D), it was
highlighted that a lack of experimental data regarding the
inuence of other input features necessitates further research.
Comprehensive studies are required to unravel the behavior of
PANI/Gr nanocomposites towards these gases and identify
crucial input variables for optimization. Such endeavors hold
the promise of advancing more effective and reliable gas
sensors for detecting C7H8 and C6H6, crucial industrial
pollutants.

Conclusively, as elucidated in earlier sections, the s-proles
of additives play a pivotal role alongside synthesis and opera-
tional conditions in predicting the electrical conductivity and
gas sensing responses of PANI/Gr systems. These additives,
including solvents, inorganic nanoparticles, or surfactants,
exert a substantial inuence on both the synthesis and perfor-
mance of nanocomposites. Intriguingly, for electrical conduc-
tivity, nonpolar regions of additive molecules emerged as the
most signicant inputs, predominantly inuencing conduc-
tivity positively. Conversely, HBA and HBD regions were iden-
tied as exerting a negative impact on conductivity. This
observed phenomenon can be attributed to the solvent-like role
of most additives, acting as washing agents to eliminate any
unreacted aniline or other compounds from the system. In
terms of gas sensing responses, all regions of additive mole-
cules were noted to negatively affect the gas sensing response.
In addition, the SHAP analysis also revealed that, even with 61
dimensions of s-proles, other inputs played more crucial roles
in the ANN predictions. This underscores the complexity of our
system and emphasizes the need for a multifaceted approach.
Consequently, the extensive SHAP analysis aligns with the input
contribution analysis, shedding light not only on the intricate
relationships between input variables and model predictions
but also providing actionable insights for the future optimiza-
tion of gas sensors. This contribution adds to the ongoing
discourse, advancing our understanding and strategies for
enhancing the performance of PANI/Gr nanocomposite
systems.
2230 | J. Mater. Chem. A, 2024, 12, 2209–2236
3.5.3. Applicability domain results. AD is a crucial theory in
ML for ensuring that models generate reliable predictions. It
refers to the space in which a model can operate with dependable
accuracy, and accurate identication is key to informed decision-
making. A standardization theory is implemented to identify and
eliminate outliers from the training set and dene inputs outside
the AD in the test set. This process is especially critical for ANNs,
complex models dependent on the range of molecules analyzed.
Quantitative evaluation of the AD provides valuable information
on the range of molecules for which ANNs can generate accurate
predictions. The range of molecules or systems for which ANNs
can generate accurate predictions can be determined by precisely
dening the AD. This knowledge is invaluable across various
applications, from electrocapacitors and gas sensors to materials
science and beyond, where ANNs are increasingly used to model
complex systems and predict outcomes.33,77,117 In determining the
AD of ANN models, various methods can be applied. However,
among numerous approaches, the leveragemethod strategy is the
most widely employed technique for identifying outliers in
datasets.76,78 The ADs of the proposed ANNs are visually depicted
in Fig. 12 using William's graphs, where the AD boundaries are
illustrated within the range of 0 < hi < h* (vertical dashed line) and
−3 < SDR < +3 (lled-colored line) for all the models.

Fig. 12A–D provide a helpful comparison of the applicability
domains of various models, including the electrical conduc-
tivity model and models for sensing response to ammonia,
toluene, and benzene. Upon examining these models, it
becomes evident that the critical leverage of the toluene sensing
model exceeds that of the other models, with the benzene
sensing model showing the second-highest critical leverage
value ðh*C7H8

¼ 1:6552. h*C6H6
¼ 1:9794. h*NH3

¼ 0:7111.
h*k ¼ 0:3834Þ. However, despite the differences in critical
leverage among the models, the analysis reveals that the
majority of data points (over 97%) conform within the AD
boundaries, signifying the dataset's limited inclusion of outliers
based on the leverage method (i.e., hi > h*), this metric holds
signicant importance in evaluating the data quality employed
to train ML models. As presented in Table 4, the electrical
conductivity model has a lower percentage of structural outliers
(0.16%) compared to the ammonia sensing model (0.30%).
These ndings suggest that the electrical conductivity model
may be more reliable in its predictions than the ammonia
sensing model. Furthermore, it is essential to highlight that
both the toluene and benzene sensing models exhibited no
structural outliers, as their leverages consistently remained
below the critical boundary of hi < h*. This observation is
consistent with the expected behavior of well-trained ANN
models. It supports their reliability for predicting the toluene
and benzene sensing properties of polyaniline/graphene
systems within their AD.

In addition to the structural outliers discussed earlier,
response outliers were also identied in the models. Speci-
cally, specic data points at exception compositions and
conditions were identied as outliers based on their SDR values
exceeding the acceptable ±3 SDR boundary. As a result, the
coverage of the models within their AD was reduced to 99.03%,
This journal is © The Royal Society of Chemistry 2024
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Fig. 12 Applicability domain assessment using William plots: (A) electrical conductivity, (B) ammonia sensing response, (C) toluene sensing
response, and (D) benzene sensing response models.

Table 4 Applicability domain parameters for the electrical conductivity, ammonia, toluene, and benzene sensing response models

Parameter Electrical conductivity
Ammonia sensing
response

Toluene sensing
response

Benzene sensing
response

h* 0.3834 0.7111 1.9794 1.6552

Training
Structural outliers 0.16% 0.30% 0.0% 0.0%
Response outliers 0.65% 0.89% 0.82% 2.05%
ADcoverage 99.19% 98.82% 99.18% 97.95%

Testing
Structural outliers 0.81% 0.30% 0.0% 0.0%
Response outliers 0.81% 1.47% 4.0% 0.0%
ADcoverage 99.19% 97.06% 96% 100%

Total
Structural outliers 0.16% 0.30% 0.0% 0.0%
Response outliers 0.81% 1.18% 1.64% 2.05%
ADcoverage 99.03% 98.52% 98.36% 97.95%
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98.52%, 98.36%, and 97.95% for the electrical conductivity,
ammonia, toluene, and benzene sensing response models,
respectively. Outliers can substantially inuence the accuracy of
model predictions, emphasizing the criticality of meticulous
identication and evaluation of the AD of models to ensure
This journal is © The Royal Society of Chemistry 2024
dependable and precise predictions. It is worth emphasizing
that the absence of data points in the double outlier region (i.e.,
hi > h* and SDRi > ±3) as illustrated in Fig. 12. This observation
underscores the robustness of the proposed ANN models,
indicating minimal impact from outliers on their performance.
J. Mater. Chem. A, 2024, 12, 2209–2236 | 2231
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In summary, accounting and identifying structural and
response outliers are crucial for improving the reliability and
accuracy of ANN models in chemical engineering applications.
This study underscores the signicance of the AD method as an
Fig. 13 Comparative analysis of experimental (symbols) and ANN-predi
effect of aniline concentration (A), dopant type and its concentration (B
conductivity, and gas type and concentration (E–H), along with the infl
sensing response (L).

2232 | J. Mater. Chem. A, 2024, 12, 2209–2236
invaluable instrument for assessing data quality during model
training, enabling the identication and evaluation of outliers
that could potentially impact model predictions. The concur-
rent use of k-fold validation and AD analysis provides a robust
cted (dashed lines) electrical conductivity and gas sensing responses:
and C), graphene loading and operating temperature (D) on electrical
uence of graphene loading (I–K) and operating temperature on gas

This journal is © The Royal Society of Chemistry 2024

https://doi.org/10.1039/d3ta06385b


Paper Journal of Materials Chemistry A

Pu
bl

is
he

d 
on

 1
1 

de
ka

br
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

8.
01

.2
02

5 
09

:5
1:

51
. 

View Article Online
framework for the holistic evaluation of our models. It is
important to note that the AD analysis, in particular, considers
the distribution of training data and helps identify how
different a data point is from the majority of the points. This
method has been chosen deliberately to enhance the under-
standing of model performance within specic boundaries.
Consequently, the ndings from this study indicate that the
predictions of new polyaniline/graphene systems, falling within
the same domain of applicability, can be deemed reliable for
preliminary polymer nanocomposite investigations, even
without experimental data. This highlights the signicance of
dependable and precise predictions for advancing new nano-
composites, mainly when the properties of the materials are
challenging to measure experimentally.

3.5.4. Systematic predictions and comparative analysis.
Systematic predictions of the effect of aniline concentration,
dopant type and its concentration, graphene loading on
conductivity, and gas type and concentration, along with the
inuence of graphene loading and operating temperature on
gas sensing responses using the developed ANNs were evaluated
and compared with the experimental data as shown in Fig. 13.

The results showcase the multifaceted behavior of PANI/Gr
in varying experimental conditions, providing insights into
the potential applications of these composites in sensor tech-
nology. The conductivity exhibits a non-linear response to the
concentration of aniline, which suggests a threshold behavior
where the conductivity stabilizes beyond a certain concentra-
tion.118 While the ANN models capture this phenomenon to
some extent, there is a noticeable divergence from experimental
data. This discrepancy suggests the intricate nature of
molecular-level interactions that might not be entirely accoun-
ted for by the ANN. Molecularly, this can be associated with
increased p–p stacking between the aniline-derived PANI
chains and the graphene sheets, leading to improved charge
transport pathways.119 When considering dopant effects, the
nature of the dopant and its concentration have pronounced
effects on the conductivity of PANI.120 The protonation of the
nitrogen atoms in the PANI backbone by acid dopants like HCl
and H2SeO3 enhances the delocalization of electrons, which is
crucial for conductivity.121 The temperature dependence of
conductivity is consistent with a semiconducting behavior
where thermal energy aids in the hopping of charge carriers,
enhancing conductivity.104,122,123 The ANN predictions closely
follow the experimental data, suggesting that the temperature
effect is well-characterized by the network parameters,
capturing the thermally activated processes within the material.

In terms of gas sensing, the nanocomposites exhibit distinct
responses to NH3, C7H8 and C6H6. The molecular interactions
between these gases and the PANI/Gr nanocomposite are crucial
for the sensing mechanism.111 NH3, being a polar molecule with
a lone pair of electrons, can interact with the p-electron rich
regions of the composites, likely forming charge transfer
complexes. This interaction alters the distribution of charge
carriers in the PANI chains, leading to a measurable change in
conductivity which is utilized for sensing.124,125 C7H8 and C6H6,
being aromatic compounds, may also interact with the nano-
composite through p–p stacking interactions. The presence of
This journal is © The Royal Society of Chemistry 2024
the methyl group in toluene introduces steric hindrance and
a slight electron-donating effect, potentially altering its inter-
action with the nanocomposite compared to C6H6. The differ-
ential sensing response between C6H6 or C7H8 can be attributed
to the size and electron density of these molecules, which
inuences their adsorption onto the system surface and
subsequent interaction with the conductive network.126–128 The
enhancement in gas response with increasing graphene content
can be rationalized by the expanded surface area provided by
graphene, which facilitates greater adsorption of gas mole-
cules.122 Additionally, graphene's high electron mobility may
contribute to more efficient charge transfer upon interaction
with gas molecules, leading to a stronger sensing response.
Meanwhile, the response to gases such as NH3, C7H8, and C6H6

indicates that the nanocomposites are sensitive to changes in
gas concentration, with the response magnitude varying
according to the type of gas.105 The response to NH3 is especially
signicant, which is a desirable trait for sensors targeting this
gas. However, the ANN predictions are less accurate at higher
concentrations, potentially due to saturation effects that are not
fully represented in the mode.

Consequently, the experimental ndings enriched by
molecular insights into the nanocomposite's interaction with
aniline, dopants, temperature, and gases, demonstrate the
complexity and potential of PANI/Gr as a material for gas
sensors. Although ANNs prove valuable in predicting over-
arching trends and behaviors, the existing disparities between
experimental and predicted data emphasize the imperative for
further model renement. Supplementary approaches such as
molecular dynamics simulations or quantum mechanical
modeling could complement ANN predictions, offering a more
thorough understanding of the intricate interactions involved.
The imperative for further renement is driven by the complex
and dynamic nature of nanocomposites' responses, necessi-
tating a nuanced comprehension. These ndings not only yield
insights into the intricate behavior of PANI/Gr nanocomposites
but also lay the foundation for optimizing these materials for
specic applications, particularly in the domain of sensitive and
selective gas detection.

4. Conclusions

In conclusion, this study comprehensively explores machine
learning models for predicting the properties of polyaniline/
graphene (PANI/Gr) nanocomposites, leveraging a rich dataset
from numerous sources. The articial neural network (ANN)
models emerge as highly accurate tools for forecasting electrical
conductivity and gas sensing responses, with meticulous
attention given to identifying and handling outliers. The
robustness of these models, particularly in the face of structural
and response outliers, underscores their reliability.

The input contribution analysis provides crucial insights
into the key parameters shaping the performance of PANI/Gr
nanocomposites, highlighting the signicance of oxidant,
aniline, doping agent concentration, and operating tempera-
ture. Complementing this, the SHAP analysis reveals intricate
relationships among input variables and model predictions,
J. Mater. Chem. A, 2024, 12, 2209–2236 | 2233
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offering valuable insights for gas sensor optimization and
contributing to the ongoing discourse on enhancing PANI/Gr
nanocomposite systems' performance. Furthermore, the study
underscores the inuential role of molecular inputs, particu-
larly the s-proles of additives, in predicting material
properties.

Applicability domain (AD) analysis is a critical facet of model
evaluation, revealing high coverage percentages and empha-
sizing the models' dependability within specic parameter
ranges. The signicance of understanding and managing
outliers is highlighted, as they can signicantly impact model
predictions. Notably, the absence of data points in the double
outlier region underscores the resilience of the proposed ANN
models.

The implications of this research extend to the practical
development of high-performance PANI/Gr nanocomposites,
offering valuable contributions to elds such as super-
capacitors, gas sensors, and energy storage devices. The call for
further investigations into the nuanced impacts of molecular
inputs on material performance reects the ongoing pursuit of
precision in nanocomposite design. Overall, this study signi-
cantly advances our understanding of machine learning appli-
cations in chemical engineering, providing a foundation for
informed decision-making and reliable predictions in devel-
oping novel materials.
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