Multicolor and sign-invertible circularly polarized luminescence from nonchiral charge-transfer complexes assembled with N-terminal aromatic amino acids†
Abstract
Circularly polarized luminescence (CPL) materials with precisely controlled emission colors and handedness are highly desirable for their promising applications in advanced optical technologies, but it is rather challenging to obtain them primarily due to the lack of convenient, powerful, and universal preparation strategies. Herein, we report a simple yet versatile solution route for constructing multicolor CPL materials with controllable handedness from nonchiral luminescent charge-transfer (CT) complexes through co-assembly with chiral N-terminal aromatic amino acids. The resulting ternary co-assemblies exhibit obvious CPL signals from 489 to 601 nm, covering from blue via green and yellow to orange-red. Notably, the CPL sign can be readily inverted by changing the substituents at the α-position of amino acids or the molecular structure of achiral electron donors due to effects on the hydrogen bonds, CT interactions, and stacking patterns. This work provides a new insight into developing CPL materials with tunable color and inverted handedness.
- This article is part of the themed collection: Chiral Nanomaterials