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 The cage concept, a central microscopic mechanism for glassy dynamics, has been utilized in 

concentrated colloidal suspensions to describe a number of phenomena. Here we probe the evolution of 

cage formation and shear elasticity with increasing volume fraction in hard sphere suspensions, with 

emphasis on the short-time dynamics. To this end we utilize linear viscoelastic (LVE) measurements, by 

means of conventional rotational rheometers and a home-made HF piezo-rheometer, to probe the dynamic 

response over a broad range of volume fractions up to the very dense glassy regime in proximity to random 

close packing. We focus on the LVE spectra and times shorter than those corresponding to the dynamic 

shear modulus G΄ plateau, where the system is approaching transient localization and cage confinement. 

On these short times (higher frequencies) the dynamic cage is not yet fully developed and particles are not 

(strictly) transiently localized. This corresponds to an effective solid-to-liquid transition in the LVE 

spectrum (dynamic moduli) marked by a High Frequency (HF) crossover. On the other hand, as volume 

fraction increases caging becomes tighter, particles become more localized, and the onset of localization 

timescale becomes shorter. This onset of transient localization to shorter times shifts the HF crossover to 

higher values. Therefore, the study of the dependence of the HF crossover properties (frequency and 

moduli) on volume fraction provides direct insights concerning the onset of particle in-cage motion, and 

allows direct comparison with current theoretical models. We compare the experimental data with 

predictions of a microscopic statistical mechanical theory where qualitative and quantitative agreements 

are found. Findings include the discovery of microscopic mechanisms for the crossover between the two 

exponential dependences of the localization onset time scale and the elastic shear modulus at high volume 

fraction as a consequence of emergent many body structural correlations and their consequences on 
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dynamic constraints. Moreover, an analytic derivation of the relationship between the high frequency 

localized short-time scale and elastic shear modulus is provided which offers new physical insight and 

explains why these two variables are experimentally observed to exhibit nearly-identical behaviors. 

 

Keywords:  hard spheres, colloidal glass, caging, short time dynamics, shear elastic modulus, 

rheology, nonlinear Langevin equation theory, particle localization 
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Chapter 3 1. Introduction  

 Brownian hard sphere colloidal suspensions is one of the simplest model soft matter 

systems with its structure and dynamics extensively studied (1–3). Nevertheless, although simple 

in terms of constituents and their interactions, this system still poses challenges (4,5) as it exhibits 

rich structural, thermodynamic and mechanical behavior especially upon increasing the volume 

fraction towards its maximum value, or random close packing (RCP) state. In the concentrated 

regime, where particle surfaces approach to distances far less than their radii on average, many 

body interactions dominate affecting microstructure, quiescent dynamics, and viscoelasticity. 

These many body correlations impose significant theoretical challenges. The nature of the glass 

transition is still a debated topic with advances being made by comparing the physics of colloidal 

suspensions with molecular glass formers (6–10). While in theory, hard core interactions are 

defined by an infinite repulsion at contact and zero at larger distances, in a real system such as the 

sterically stabilized Poly-methylmethacrylate (PMMA) spheres (11) the repulsion pair potential 

cannot be infinitely steep (12) and the softness induced by the steric layer may affect the 

viscoelastic response at higher frequencies  (13). 

 In the colloidal regime, time scales are set by the elementary Brownian time τ0 (= R2 /6D0), 

with R the particle radius, D0 = kBT/6πηsR the Stokes-Einstein-Sutherland self-diffusion 

coefficient at infinite dilution, kB the Boltzmann constant, T the absolute temperature, and ηs the 

solvent viscosity. As the particle volume fraction increases from the dilute limit, particles start to 

interact via solvent-mediated hydrodynamic and excluded volume (entropic) interactions and 

hence the microscopic particle dynamics slow down. Eventually at volume fractions around ϕ ≈ 

0.4 (14) the dynamics split into two distinct relaxation modes, one on a short length and hence 

short time scale (often referred to as β-relaxation in the Mode-Coupling Theory (MCT) 

framework) within the first neighbor distances, and one on larger and hence longer time scale, the 

so-called α-relaxation, where particles diffuse beyond their first neighbor shell (15,16). At the 

onset of the thermodynamically metastable (17) regime at ϕ ≈ 0.49, the two relaxation processes 

start to strongly separate in time (5). At the phenomenologically deduced glass transition volume 

fraction, typically cited to occur at ϕ ≈ 0.58 and determined based on the (arbitrary) practical 

longest time scale of a measurement or extrapolated fits of an “ideal” MCT critical power law, the 

inverse long-time diffusion constant and related zero-shear viscosity exhibit a sharp increase. 

Taking the cage model as a reference (15) the two relaxation modes have different origin: the β-
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relaxation is linked to in-cage rattling (18,19) and the structural α-relaxation to thermally activated 

hopping or cage escape. This mobility reduction is also reflected in the mean squared displacement 

(MSD), ⟨𝛥𝑟2(𝑡)⟩=⟨|𝑟(𝑡)-𝑟(0)|2⟩ where r(t) denotes particle position at time t and the bracket 

represents an ensemble average over all particle trajectories under consideration. At higher volume 

fractions (ϕ > 0.58) and intermediate time scales (between α and β-relaxation) single particle 

motion becomes even more strongly coupled to the structure and dynamics of neighboring 

particles, and its subdiffusive character on intermediate time and length scales becomes more 

prominent. This is the regime where the localization plateau emerges, thereby separating the 

dynamics into long-time and short-time regimes with their diffusion coefficients 𝐷𝐿 and 𝐷𝑆 (20–

23) corresponding to the α-relaxation and β-relaxation, respectively. Interestingly, the term β-

relaxation was originally used in molecular glass formers to describe the relaxation modes that are 

extrinsic to the nature of glass transition (24). Note that the β-relaxation can refer to different 

microscopic dynamical processes in thermal molecular glasses and hard sphere colloidal glasses, 

although in both cases they reflect the more short-time and local motions in each system, however 

at different values of absolute length- and time-scales. In the colloidal field - hence in this work - 

it refers to the particle in-cage motion. 

 A similar behavior is exhibited in linear viscoelastic (LVE) spectra where dynamic moduli 

at low- and high-frequencies (long- and short-times respectively) are separated by the caging 

plateau which thereby defines the intermediate time dynamically relaxed elastic shear modulus G΄, 

as has been shown in previous studies (25–27). When the probing frequency is decreased 

sufficiently (at frequencies often inaccessible to commercial rheometers) the suspension exhibits 

a liquid-like behavior marked by the Low-Frequency (LF) G΄- G΄΄ crossover with a time scale 

1/ωc-LF. Similar phenomenology, but for a completely different reason, is exhibited at elevated 

frequencies. For these short-time observations the system appears as liquid-like as LVE probes the 

in-cage particle diffusion. This is reflected in the rheological response which exhibits a second 

solid-to-liquid transition and a relevant High Frequency (HF) G΄ - G΄΄ crossover, at a frequency 

ωc-HF >1/τ0 >> ωc-LF.  

 A significant amount of work in the literature has focused on the long-time α-relaxation 

process and the caging plateau which is the manifestation of the kinetic glass transition and the 

transiently localized state, respectively. The α-relaxation has been the epicenter of a debate 

concerning whether the literally frozen dynamics predicted by MCT (28) is true or whether the 
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cage has a finite lifetime due to the presence of ergodicity-restoring thermally activated hopping 

processes (5) as predicted by other theories (29). The latter is generally acknowledged to be the 

case based on dynamic scattering experiments (30,31) and direct trajectory observations (32,33). 

To the best of our knowledge, no systematic study has quantitatively linked the rheological 

signature of colloidal glasses at high frequencies with the theoretical description of short-time 

relaxation. Hence, its connection with elastic shear modulus remains elusive.  

 In this work we focus on microscopic times, and in particular a measure of the timescale 

for the onset of transient localization, τloc, and its relation to 1/ωc-HF obtained from macroscopic 

rheology. For the case of monodisperse spheres the LF crossover can be modeled by a single 

element Maxwell fluid where the relevant time scale is defined by the moduli crossover frequency. 

This Maxwell relaxation is linked to the long-time diffusion coefficient (34). However, this is not 

the case for the HF crossover where its prediction is more challenging (35). The HF crossover 

clearly sets a time scale, τc-HF = 1/ωc-HF, and a corresponding modulus Gc-HF = G΄(ωc-HF) = G΄΄ (ωc-

HF) that marks the practical solid to liquid crossover transition, and should reflect the characteristic 

dynamics within a cage length-scale. We explore the behavior of the HF crossover by performing 

intermediate and high frequency small amplitude oscillatory shear experiments in a HS colloidal 

suspension where the volume fraction is systematically increased.  

There are many direct (36) and indirect  (37,38) methods to obtain high frequency LVE 

data, with their own merits and limitations. High frequency oscillatory shear is not possible with 

most commercial rheometers which are limited to frequencies up to around 200 rad/s. We utilize 

high frequency rheometry by means of an in-house developed piezo rheometer (PZR) capable of 

extending the accessible frequency range up to 7000 rad/s thus probing faster dynamics (39). The 

volume fraction dependence of Gc-HF and ωc-HF extracted from the LVE spectra  are compared with 

the predictions of the Nonlinear Langevin Equation (NLE) theory within the dynamic free energy 

framework (40,41) and the physical mechanisms underlying our Gc-HF and ωc-HF measurements are 

elucidated. The relation of LVE and dynamics is briefly described in section 2 where the relevant 

time scales are defined. Section 3 presents the background on NLE theory followed by a materials 

and methods description in section 4. Theoretical predictions of NLE theory and experimental 

rheological data are compared and discussed in section 5, before concluding in the last section 6.         
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2. High frequency LVE and in-cage dynamics 

 The classic Stokes-Einstein-Sutherland (SE) equation relates the solvent viscosity to the 

single particle self-diffusion constant in the dilute limit (21). By generalizing this equation, Mason 

et al. related the MSD to the frequency-dependent complex modulus G* (ω) given by (27,42): 

𝐺*(𝜔)=
𝑘𝐵𝑇

𝜋𝑅𝜄𝜔⟨𝛥𝑟2~ (𝑡)⟩
                                                                                                                           (1) 

where 𝜄 is the imaginary unit and ⟨𝛥𝑟2~ (𝑡)⟩ the Fourier transform of the MSD. Hence, 

𝐺΄(𝜔)=|𝐺*(𝜔)|𝑐𝑜𝑠 (
𝜋𝛼(𝜔)

2
)                                                                                                      (2)  

𝐺΄΄(𝜔)=|𝐺*(𝜔)|𝑠𝑖𝑛 (
𝜋𝛼(𝜔)

2
)                                                                                                      (3) 

where α is: 

𝛼(𝜔)=
𝑑𝑙𝑛⟨𝛥𝑟2(𝑡)⟩

𝑑𝑙𝑛𝑡
                                                                                                                            (4) 

Eq. (1) is one of the so-called Generalized Stokes Einstein (GSE) equations, that contrary to the 

simple SE equation for simple liquids, is an approximate extension to all frequencies for 

viscoelastic systems (27,43). Moreover, the SE equation and its generalizations do assume the 

validity of fluctuation dissipation theorem which in turn implies a system at thermodynamic 

equilibrium. Nevertheless, this is a reasonable approximation also for glassy systems where the 

evolution towards equilibrium is slow or completely halted, i.e. the system is at a long-lived local 

minimum of the free energy. This has been evidenced by microrheological experiments (44) and 

verified theoretically for colloidal glasses (34).  In a reverse procedure, Fig. 1 demonstrates the 

use of linear viscoelastic data measured by a dynamic frequency sweep in the linear regime to 

calculate the MSD in a hard sphere glass sample.  
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Fig. 1 Typical LVE spectrum (left Y axis), G΄ (solid circles) and G΄΄ (open circles) of a colloidal glass at the HF 

regime measured with a commercial rotational rheometer MCR702 and a homemade PZR up to the angular frequency 

of 4000 rad/s. The corresponding MSD (right Y axis, solid squares) is obtained by rearranging Eq. (2) and (3). Abscissa 

is either angular frequency (bottom) or the corresponding observation time t = 1/ω (top). An indication of the dynamic 

cage size, rcage can be provided by the MSD plateau. The corresponding times for the high frequency cross-over and 

approach to the cage limits are also indicated by the vertical arrows. 

Fig. 1 presents the interrelation, via equations 1-4, of a measured LVE spectrum to the 

corresponding particle MSD for a hard sphere colloidal glass. The sample used as an example here 

is a suspension of PMMA particles of hydrodynamic radius Rh = 151 nm in a viscous solvent 

(squalene) with a volume fraction 𝜙 = 0.63. At long times (low frequencies) particles are localized 

within a cage localization length, rcage, determined by the plateau of the MSD. This localization 

length is linked to the plateau modulus of G΄via the GSE relation. At short times (high frequencies) 

the MSD slope approaches a linear dependence on time. The corresponding volume fraction 

dependent short-time diffusion coefficient, Ds (ϕ), at such high volume fractions, is expected to be 

about one order of magnitude slower than the dilute suspension (bare) SE diffusion coefficient, 

D0. A localization time is defined as the time required for a particle to sufficiently explore its 

environment i.e. to “feel” its cage constraints and become transiently localized by its nearest 

neighbors. This process represents a transition of the MSD from diffusive to highly sub-diffusive, 
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and the corresponding localization time can be crudely estimated as τ΄cage = rcage
2 / 6Ds(ϕ), where 

rcage is the displacement related to the dynamical cage size, as defined by the MSD long-time 

plateau. Still particles need, on average, significantly longer time to reach a distance equal to rcage; 

this time was qualitatively introduced above and is indicated as τcage in Fig. 1. From this simple 

graphical representation, it is clear that this microscopic localization time τ΄cage and the τc-HF 

deduced from macroscopic linear viscoelastic measurements at the high frequency G΄= G΄΄, cross-

over point, are comparable and potentially interrelated.  

We should point out here that the microscopic dynamics deduced from the high frequency LVE 

measurement (shown in Fig. 1) could in principle be measured by optical microscopy or dynamic 

light scattering (DLS), when the latter probes, under certain contrast conditions, the self 

intermediate scattering function and therefore particle self-diffusion. In that sense hydrodynamic 

effects present in quiescent colloidal systems, affect the dynamics probed both in LVE and DLS 

in the same way. On the other hand, under non-linear shear (not utilized here), hydrodynamic 

interactions would strongly affect the microstructure and microscopic dynamics. 

3. Nonlinear Langevin equation theory 

 Within the dynamical, “ideal” MCT, glass transition picture for hard sphere colloidal glass 

formers, the long-time diffusivity, DL(ϕ), approaches zero experimentally at ϕg ~ 0.58 for 

monodisperse spheres. This is typically only inferred via an extrapolation from experimental and 

simulation data by fitting to a presumed functional form, e.g., the critical inverse power law of 

MCT. On the other hand a finite slow α-relaxation has been detected at higher volume fractions of 

slightly polydisperse particles where it is argued the α time crosses over to an activated form 

(30,45). In contrast to this “ideal” MCT glass transition picture, the Nonlinear Langevin Equation 

(NLE) theory predicts a non-zero DL up to ϕRCP. This is due to the thermally activated hopping of 

particles over an entropic barrier (computed microscopically) that always restores ergodicity via 

cage escape, in principle, at long enough times (46). This is qualitatively consistent with 

experimental observations (43) for the out-of-cage diffusion which is predicted to freeze only at 

RCP, avoiding MCT singularities which have been estimated by various methods to lie in the 

interval 0.64 >> ϕ > 0.515. The precise value of the latter number depends on structural input to 

MCT and the statistical mechanical level of a MCT-like analysis (47,47) employed, but is always 

below RCP. The short-time diffusivity, 𝐷𝑠(𝜙)  remains finite and measurable even upon 
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approaching ϕRCP ~ 0.64 for monodisperse spheres due to local in-cage particle diffusion since 

some internal free volume is still available. 

Within NLE theory, the entropic barrier emerges from the prediction of a spatially-resolved 

effective dynamic free energy, Fdyn(r), where r is scalar particle displacement from its initial 

position, and the negative gradient of the dynamic free energy defines an effective force on a 

particle due to all surrounding particles. It is calculated based solely on equilibrium structural input 

via the radial distribution or pair correlation function, g(r), or its Fourier analogue, the static 

structure factor S(q) (40,41), and is given as 

𝛽𝐹𝑑𝑦𝑛(𝑟)=-3𝑙𝑛 (
𝑟

𝑑
) -

1

(2𝜋)3 ∫ 𝑑𝑞
𝜌𝐶2(𝑞)𝑆(𝑞)

1+𝑆-1(𝑞)
𝑒-𝑞2𝑟2[1+𝑆-1(𝑞)] 6⁄                                                 (5) 

Here, d is the particle diameter, β=1/kBT the inverse thermal energy, C(q) is the Fourier transform 

of the direct correlation function C(r), 𝑆(𝑞)=(1-𝜌𝐶(𝑞))
-1

, and ρ the particle number density. An 

example of the dynamic free energy for ϕ = 0.58 is shown in Fig. 2(a). It consists of an ideal 

entropy-like term, which favors the “delocalized” Fickian diffusion liquid state (per the -3𝑙𝑛 (
𝑟

𝑑
) 

term in Eq. (5)), and a smoothly decaying, negative contribution, finite at r = 0 (the second term 

in Eq. (5)) due to interparticle interactions and correlations which favors particle localization. The 

minimum of the dynamic free energy defines a simple measure of the transient localization length 

rloc in the cage. The combination of the two contributions in Eq. (5) leads to an entropic (for hard 

spheres) activation barrier in dimensionless units, 𝛽FB (see Fig. 2(a)), beyond a volume fraction 

of ~0.43 that must be surmounted via thermally driven hopping to achieve out of-cage motion and 

ultimately structural relaxation and long distance Fickian diffusion. However, the barrier is only 

of order of kBT or less until the volume fraction approaches the onset of the thermodynamically 

metastable regime at  ~ 0.49, and hence activated dynamics emerge only sufficiently deep in the 

metastable regime where the barrier is significantly higher than kBT. 

The required structural input (S(q) and c(q)) for hard sphere fluids in Eq. (5) can be 

calculated from the Ornstein-Zernike (OZ) integral equation  (48): 

ℎ(𝑟)=𝑐(𝑟) +𝜌 ∫ 𝑐(|𝑟-𝑟΄|)ℎ(𝑟΄)𝑑𝑟΄                                                                                         (6) 

where h(r) ≡ g(r) – 1, and an approximate closure relation needed. The classic Percus–Yevick (PY) 

is a good approximation in the normal fluid regime, but not nearly as accurate in the metastable 

regime of present interest since it sets c(r) to zero outside the hard core and misses important many 
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body effects (48). Recent combined theory and simulation work, for metastable regime, has shown 

that the Modified Verlet (MV) (49,50) closure is remarkably accurate up to very high volume 

fractions of ~ 0.585 (51). Physically, the key is that the direct correlation function has a short-

range attractive tail outside the core that grows in amplitude with volume fraction (see Fig. 2(b)). 

This effective many body attraction strongly modifies g(r) and S(q), the key input to the dynamical 

free energy construction in NLE theory.  

The OZ-MV theory for monodisperse hard sphere fluids predicts a structural and 

thermodynamic crossover at 𝜙𝑠 associated with new type of many body effects (52). The 

distinctive changes of all equilibrium properties are in good accord with simulations and 

experiments, (52). As true of all approximate integral equation theories, the location of RCP is not 

captured correctly and is typically (well) beyond 0.644. For the OZ-MV theory, it is found at 

RCP Though far beyond the correct value of 0.644, it is much closer to the correct value 

than well studied integral equations theories such as OZ-PY, or popular empirical representations 

such as the Carnahan-Starling model, which both locate the incompressible RCP state at 

= Moreover, it has been argued the new physics that emerges in the deeply metastable state 

(e.g. ) but well below the RCP volume fraction is not affected to leading order by the too 

large value predicted for RCP (52).   

 Given the dynamic free-energy from Eq. (5), the mean time required for a tagged  particle 

to displace “downhill” from its initial position to the minimum (localized state) in the overdamped 

limit (no inertia) can be computed by using Kramer’s mean first passage time theory (53,54) as 

𝜏𝑙𝑜𝑐

𝜏0
=

2𝑔(𝑑)

𝑑2 ∫ 𝑑𝑟𝑒𝐹𝑑𝑦𝑛(𝑟)/𝑘𝐵𝑇 ∫ 𝑑𝑟′𝑒-𝐹𝑑𝑦𝑛(𝑟′)/𝑘𝐵𝑇𝑟

0

𝑟𝑙𝑜𝑐

0
                 (7) 

where g(d) is the value of the radial distribution function at contact (d = 2R) and it enters via 

quantification of the short time dissipative friction relevant to hard sphere colloidal suspensions 

(40,55). Eq. (7) ignores collective elastic contributions to the barrier of ECNLE theory (56,57) 

which have been shown to be critical for the deeply metastable regime alpha time which is 

associated with the relatively large particle displacements characteristic of barrier crossing. 

However, this long-time contribution is not important for the present analysis of the dynamic 

elastic shear modulus and localization length on short-time and -length scales. The dynamically 

relaxed elastic shear modulus plateau associated with the transiently localized state can then be 
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calculated theoretically by projecting stresses onto collective density fluctuations in the usual way, 

and within the single particle dynamical framework of naïve MCT (NMCT) (58) one has:  

𝐺′=
𝑘𝐵𝑇

60𝜋2 ∫ 𝑑𝑞 [𝑞2 𝑑

𝑑𝑞
𝑙𝑛 (𝑆(𝑞))]

2

𝑒𝑥𝑝⌈
-𝑞2𝑟𝑙𝑜𝑐

2

3𝑆(𝑞)
⌉

∞

0
       (8) 

 

0.0 0.2 0.4
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-3
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6

 F
d
y
n
 /k

B
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r /d

rhop

rloc

FB

 = 0.58

(a)

rB

1.00 1.04 1.08 1.12

-6

-3

0

3

6

9(b)  PY     MV     

|  0.50

|  0.54

|  0.58

|  0.60

-c
(r

/d
)

r/d  

Fig. 2 a) Dynamic free energy in units of the thermal energy at ϕ = 0.58. Localization and hopping jump lengths related 

to in- and out of-cage motion, respectively, are indicated, and FB is the entropic barrier. b) Value of the direct 

correlation function with reversed sign for different volume fractions based on PY (dash-dotted) and MV (solid) 

closures in the near contact region. It represents an effective or renormalized interparticle interaction pair potential in 

units of the thermal energy. 

We note that the mean-time scales for particle displacement to longer distances can be similarly 

computed. For example, though not our focus here, for the barrier crossing event identified as the 

elementary step of the long-time α-relaxation, the timescale follows from Kramers theory by 

changing the upper limit of the integration range from 𝑟𝑙𝑜𝑐 to the barrier location 𝑟𝐵 as shown in 

Fig. 2(a), and including the collective elastic barrier contribution (56,57). 

4. Materials and experimental methods 

 Sterically stabilized nearly hard-sphere PMMA particles with hydrodynamic radius Rh = 

264 nm dispersed in squalene (Sigma Aldrich, Germany) were utilized as the primary sample. 

Steric stabilization is realized by chemically grafted poly-hydro-stearic acid chains (≈10 nm). 

Squalene was chosen as a solvent for its high boiling point and its refractive index proximity to 

PMMA in order to prevent evaporation and minimize any remaining Van der Waals attractions, 

respectively. Its relatively high viscosity enhances torque signal but most importantly slows down 

the in-cage dynamics allowing the high frequency crossover to be accessible to conventional 
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rotational rheometers such as MCR501, MCR702 (Anton-Paar, Austria) and ARES (TA 

Instruments, USA) and, our in-lab developed high frequency piezorheometer (PZR). MCR702 was 

fitted with cone–plate geometry and utilized in a separated motor transducer mode to minimize 

tool and sample inertia effects (39). The solvent shear viscosity was measured with a DMA 4100M 

viscometer (Anton Paar, Austria) and found to be ηs = 13.32 mPa s at T = 23 oC. The particle 

hydrodynamic radius was confirmed by dynamic light scattering measurements in the dilute 

regime.  

Size polydispersity (standard deviation over the mean) of our samples is around 10% which 

suppresses crystallization. Different volume fractions were prepared from a single random close 

packing (RCP) batch, created by centrifugation. Starting from RCP, which was taken to be ϕRCP ≈ 

0.67 (for a 10% polydisperse particles) (59) the sample was successively diluted from about 0.64 

to 0.45, with a total of 38 discrete samples progressively prepared, ensuring an accurate 

determination of the volume fraction among each other and relative to the initial RCP sample. 

More recent work (60) suggest that the RCP volume fraction for 10% polydisperse hard spheres is 

in the range 0.638-0.658 depending on compression rate (or centrifugation speed in our 

experimental protocol), i.e. clearly lower than that estimated by Schaertl et al. (59) which we use 

in this study, for consistency with our previous work (25).  

Aging at these systems is weak and affects mainly G΄΄ at the lower frequency-end as short 

time in-cage dynamics are essentially age-independent (39,61,62); hence the system is considered 

within the experimental timescales as time invariant. Particle swelling can induce significant 

uncertainties and therefore the stock sample was left at rest for two months after solvent exchange 

and then centrifuged to RCP. After solvent addition the vial was placed on a rolling mixer for 

sufficiently long period depending on the concentration. Once particle dispersion was completed, 

followed by a rest time of 12 hours, the sample was loaded on the rheometer. A reduction of the 

rest time was required for the less concentrated samples (ϕ < 0.58) to prevent sedimentation. All 

measurements were completed within 2 hours upon loading with no shear induced rejuvenation, 

i.e. no steady or oscillatory pre-shear.  

To accurately determine the HF moduli crossover small amplitude oscillatory shear 

measurements were performed with 20 points per decade in the frequency regime of interest. Each 

dynamic frequency sweep measurement was performed at the optimum strain amplitude (ranged 

from 2% to 0.8%) in order to achieve significant torque signal and keep perturbation below the 

Page 12 of 36Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
fe

vr
al

 2
02

5.
 D

ow
nl

oa
de

d 
on

 0
9.

03
.2

02
5 

14
:3

6:
19

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4SM01428F

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm01428f


Page |13 

 

linear limit determined by dynamic strain sweep. A weak evolution of the moduli was observed in 

very dense samples (ϕ > 0.6) within the first 30 minutes. At longer times the LVE spectra and 

particularly the HF crossover were found to be time independent. Plate-plate 25 mm geometry was 

utilized in the very dense samples to overcome difficulties related to loading a stiff sample. Less 

concentrated samples were measured with cone – plate 50 mm geometry in the ARES rheometer.  

5. Results and discussion 

Dynamic frequency sweeps were utilized to capture the LVE spectrum of these hard 

spheres suspensions as volume fraction is systematically decreased. The angular frequency and 

modulus of the HF crossover were the parameters of specific interest. Hence, the conventional 

MCR702 or ARES data were complemented by measurements in the PZR when needed, i.e., at 

very concentrated samples where the HF crossover is detected at higher frequencies, beyond the 

range of conventional rheometers.  
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Fig. 3 Dynamic frequency sweeps of concentrated (ϕ=0.64, 0.617 and 0.545) hard spheres (Rh = 264nm) dispersed in 

squalene at T = 23°C. Measurements were performed by various commercial rotational rheometers such as MCR 702, 

ARES and, our in-lab developed PZR as indicated. Vertical and horizontal arrows point to the dynamic moduli 

crossover frequency, ωc, and modulus (magnitude), Gc, respectively. 

The LVE spectra of three samples (out of the total 38 measured) are shown in Fig. 3. The 

most concentrated sample with ϕ = 0.64 exhibits the HF crossover at 586 rad/s while at lower 

frequencies the caging plateau emerges. As ϕ is decreased to 0.617, still in the nonequilibrium 
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glassy regime, ωc-HF decreases and falls within the frequency range of the MCR702 instrument. 

This frequency decrease of the HF crossover reflects the cage enlargement and the less frequent 

exploration of cage boundaries exhibited by the particles as their concentration is reduced. The 

caging plateau is shifted to even lower frequencies with no indication of a LF crossover at the 

lower frequencies reached, (0.1 rad/s). On the contrary, at ϕ = 0.545 the LF crossover becomes 

faster and the HF crossover slower, and hence both are now accessible with our conventional 

rotational rheometers. In this low volume fraction but still in the metastable regime, the cage 

becomes larger and weaker as the entropic barrier height decreases resulting in more frequent out-

of-cage hopping events.  

Short-time dynamics: theory and experiment  

 Kramers’ theory  is used  to predict the mean first passage time for a particle to displace 

“downhill” on the dynamic free energy from r = 0 to rloc (see Fig. 2(a) and Eq. (7)) and thereby 

reach its transiently localized state (40) and become “caged”, thereby defining the localization 

time,  τloc. The theoretical predictions can be compared with the experimental time (or frequency) 

of the HF crossover obtained from LVE measurements. This comparison is shown in Fig. 4 where 

the behavior of ωc-HF for the entire ϕ range probed (panel (a)) and the NLE theory predictions for 

ωloc = 1/τloc from Eq. (7) (panel(b)) are depicted. Interestingly, our experimental results reveal two 

exponential regimes with a much stronger exponential increase at ultra-high volume fractions. In 

particular, the experimental data for ϕ > 0.60 show an exponential increase as ωc-HF ~ exp(61ϕ), 

while for lower volume fractions (still high in an absolute sense) the slope is a factor of 2 smaller, 

per ωc-HF ~ exp(31ϕ). Data enclosed in the dashed rectangle, corresponding to the even lower 

volume fraction regime (0.53 < ϕ < 0.55), depart from exp(31ϕ) behavior, and will be discussed 

later.  

The NLE theory predictions for monodisperse hard sphere fluids in Fig. 4(b) for the 

localization time τloc are expressed in units of the elementary bare timescale, which, as discussed 

above, for a colloidal suspension is τ0 = 𝑅2/𝐷0  with 𝐷0 the dilute suspension Stokes-Einstein 

diffusion constant. Results are plotted as the dimensionless ωloc = 1/τloc, and are in good semi-

quantitative accord with the experimental data. In particular, the two exponential behaviors are 

predicted, and the ratio of the exponential slope parameters are comparable to that of the 

experimental data (a factor of ~ 2), albeit smaller in an absolute magnitude sense. Moreover, the 

absolute value of ϕ at the crossover between the 2 exponential regimes is nearly the same for theory 
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and experiment, occurring at a value of  ~ 0.6. Notably, this change of slope only appears when 

the structural input to NLE theory is from OZ-MV theory, as indicated by the black squares in Fig. 

4(b). Moreover, the exponential growth laws have a theoretical basis in OZ-MV theory which 

predicts multiple structural metrics (including the density correlation length objectively deduced 

from h(r)=g(r)-1) to grow exponentially in the metastable regime (63). On the other hand, the 

dynamical predictions that use OZ-PY theory structural input in Fig. 4(b) (purple circles) exhibit 

a single exponential regime, a direct reflection of the absence of the new emergent many-body 

attraction in the direct correlation function in OZ-PY theory (52). Thus, the crossover of the two 

exponential regimes observed in experiments is attributed to the importance of the new structural 

many-body effects on the dynamic caging process that leads to particle localization in the highly 

dense metastable or so-called deep glass state. 
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Fig. 4 Volume fraction dependence of a) the HF crossover frequency obtained from small amplitude oscillatory shear 

experiments scaled by the bare Brownian time (τ0 = R2/6D0) (right axis) and unscaled (left axis) and b) the 

dimensionless localization frequency (τ0/τloc) related to the in-cage dynamics calculated from NLE theory (Eq. 7) with 

MV closure approximation (open squares) and PY closure (open circles), where the y-axis (ω) is also normalized by 

τ0. The lines in both (a) and (b) indicate the different slopes as denoted. The vertical arrow in (a) indicates the 

experimental distance from RCP for the critical volume fraction for change of slope. Data points in (a) shown in open 

red symbols (shaded area) are discussed below in Fig. 8. The top horizontal scale in panel (b) indicates the distance in 

volume fraction from the OZ-MV theory predicted RCP volume fraction. 
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Fig. 5 Volume fraction dependence of a) the HF crossover modulus obtained from experiments with hard spheres, Rh 

= 264nm dispersed in squalene at T = 23°C and b) the normalized elastic shear modulus calculated theoretically from 

Eq. (8) with MV closure approximation (open squares) and PY closure (open circles), where the y-axis is normalized 

over thermal energy per volume to allow comparison with theory. The lines indicate the different slopes as in Fig. 4. 

The vertical arrow indicates in (a) the experimental distance from RCP at the critical volume fraction where data 

exhibit a change of power law slope. The top horizontal scale in panel (b) indicate the distance in volume fraction 

from the OZ-MV theory predicted RCP volume fraction. 

 

The theoretically predicted Gc-HF corresponds to the value of the elastic shear modulus in 

the localized state and is computed using Eq. (8). This is effectively a MCT calculation albeit 

within the simpler single particle based “naïve” version (52). The theoretical dynamic shear 

modulus also exhibits two regimes with a change in slope at ϕ = 0.6, consistent with the 

experimental findings, as shown in Fig. 5. This qualitative behavior has been observed in earlier 

work (25) and attributed to a rheological signature of the glass transition that was shifted to higher 

volume fraction (compared to the nominal at ϕ ≈ 0.58) due to particle polydispersity. The present 

theory clearly predicts the same behavior for monodisperse spheres if the effective many body 

attractions in c(r) contained in the MV closure are included. Therefore, the two exponential 

regimes in Gc-HF(φ) and ωcr_HF(φ) observed experimentally are again a consequence of the 

importance of many-body effects in local packing structural correlations and elastic stress storage 

which is strongly coupled to slow density fluctuations. This implies that these many body 

interactions, though not negligible at ϕ smaller but close to 0.6 (see Fig. 2(b)), become very 

important at higher volume fractions, and dominate at ϕ > 0.6 (see Fig. S1).  
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  If the experimental and theoretical results in Fig. 4 and Fig. 5 are compared quantitatively 

then one should note that the shear modulus results of the latter have been extended to higher 

volume fractions (up to about 0.72). This high value (for all integral equation theories) is still well 

below the RCP volume fractions predicted by OZ-MV theory as discussed above and in depth in 

ref.(52). We do not believe this caveat affects the model predictions at lower volume fractions, as 

has also been discussed in (52). Nevertheless, we also present in Fig. 4 and Fig. 5 both the 

experimental and theoretical data plotted as a function of the distance to their corresponding RCP 

volume fractions, even though we do not expect this distance is the controlling factor that 

determines the new physics for Brownian colloids. Indeed, we emphasize that the second 

exponential regime in G΄ (as well as in the high cross over frequency) emerges from the theory 

well below the theoretical RCP. For the experiments, we note that although the absolute volume 

fraction values depend on the value of φrcp used, the relative distance to rcp, φrcp - φs, is not affected. 

Moreover, direct comparison of theory results for a monodisperse hard sphere model with the 

polydisperse colloid experimental system inevitably involves some (modest) quantitative 

uncertainty. It is to within these caveats that all quantitative comparisons of theory and experiment 

at a fixed common value of absolute volume fraction should be viewed.  

Overall, we believe that our findings above contribute to a deeper understanding of the 

nature and origin of the dynamical cage concept as it relates to the correlated pair structure. One 

can identify a characteristic crossover volume fraction of ϕ ~ 0.6 in the various dynamic properties 

(Fig. 4 and Fig. 5) as 𝜙𝑠  defined above based purely on a qualitative change of structure and 

thermodynamics in the deeply metastable regime, which signals when a new type of many body 

effects become dominant. This deduction relates to simulation findings that indicate, irrespective 

of the existence or not of an MCT-like glass transition volume fraction, the emergence of a distinct 

type of dynamic and structural response in a high volume fraction regime approaching RCP but 

well below it (52,64–66). On the experimental side, this volume fraction regime is identified with 

a type of nonequilibrium glassy state as defined in a practical sense where i) crystallization (if 

particles are monodisperse) is practically suppressed, ii) the α relaxation is long enough (though 

presumably not infinite) that is practically out of the experimental window (see extrapolation 

shown in Fig. S2), and iii) a solid like response is observed at all practical timescales. In colloidal 

suspensions, this volume fraction (usually denoted as  𝜙𝑔) is typically estimated to be ~ 0.58-0.6, 
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with the exact value depending on particle polydispersity, compression rate, and/or other 

experimental or simulation conditions.  

Returning to the primary issue of the relatively short time and length scale dynamics, an 

important question is whether there is any intuitive theoretical understanding of why 𝜔loc behaves 

so similarly to the dynamic shear modulus 𝐺 in Fig. 5, a trend observed in our experiments.  In 

order to provide an answer, we explore different technical simplifications of the NLE theory since 

we do not directly theoretically analyze the frequency-dependent moduli. First, we note that the 

theoretical result for 𝜔loc𝜏0 in Fig. 4(b) was numerically calculated based on Eq. (7) with specific 

input from the dynamic free energy of Eq. (5), an approach we call Method-I.  As discussed above 

in the theoretical background section, 𝐹dyn(𝑟)  contains two contributions, one favoring 

delocalization, and one favoring localization, and both are included in Method-I.  Regarding the 

short-time and -length scales associated with particle displacements that reach the localized caging 

state, activated barrier crossing processes are entirely irrelevant, suggesting the first contribution 

might dominate to leading order. One can thus simplify the dynamic free energy to 𝛽𝐹dyn ≅

-3𝑙𝑛 (
𝑟

𝑑
). Substituting this in Eq. (7), and employing the correctly computed value of  𝑟𝑙𝑜𝑐 from 

the full theory, one can obtain a different estimate of 𝜔loc𝜏0, an approach we call Method-II. A 

third approach follows from noting that the dynamic free energy near its minimum is, by definition, 

parabolic, per an Einstein amorphous solid. This suggests considering the harmonic approximation 

𝛽𝐹dyn=
𝐾0

2
(𝑟-𝑟𝑙𝑜𝑐)2 where the spring constant 𝐾0 is the curvature at the localization length scale 

𝑟𝑙𝑜𝑐 predicted by the full NLE theory, an approach we call Method-III. 

To test the robustness of our theoretical analyses, the results of these three different 

approximate Methods are compared in Fig. 6.  We find that Methods II and III deliver very similar 

results as that shown in Fig. 4(b): two exponential regimes with the crossover at nearly the same 

volume fraction. Moreover, all slopes in the same 𝜙 range are nearly identical for all three Methods. 

This agreement provides support for the idea that, although the theory does not explicitly analyze 

the frequency dependent shear modulus, the extraction of related information from the dynamic 

free energy reports information physically akin to the experimental 𝜔loc, a conclusion in accord 

with our a priori physical expectations.  
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To test the level of quantitative agreement between the functional form of the predicted 

results based on the different methods, the results of Methods II and III are vertically shifted to 

align them with the predictions based on Method I. Encouragingly, the inset of Fig. 6 shows that 

a well-collapsed master curve is obtained. Thus, the short time or high frequency behavior 

associated with cage formation and the onset of particle location discussed in Fig. 4(a) from 

experiment, and in Fig. 4(b) from the NLE theory, can be interpreted as corresponding to a physical 

picture of particle motion akin to a damped, Brownian, localized vibrational-like downhill motion. 

Finally, analytic insight can be obtained based on Method-II since the integral of Eq. (7) can be 

exactly performed thereby yielding  𝜔loc𝜏0=
𝑑2

2𝑔(𝑑)𝑟𝑙𝑜𝑐
2  . This result provides explicit physical 

insight into what controls the inverse localization time: the dynamic localization length, and the 

contact value of g(r) which amplifies the pure solvent friction, 𝜁𝑆𝐸 , to that felt by a translating 

colloid in concentrated suspensions, 𝜁𝑠, due to independent binary collisions on short-length and -

time scales (as 
𝜁𝑠

𝜁𝑆𝐸
=𝑔(𝑑) )(40).  In addition, it has been well established previously, both 

numerically and analytically (58),  that the dynamic elastic shear modulus within the NMCT 

framework is predicted to obey a microrheology-like relationship to the inverse square localization 

length 𝑟𝑙𝑜𝑐
-2 , per 𝛽𝐺𝑑3 ≈

9

5𝜋

𝜙𝑑2

𝑟𝑙𝑜𝑐
2 . Combining this with the above relation 𝜔loc𝜏0=

𝑑2

2𝑔(𝑑)𝑟𝑙𝑜𝑐
2 , we 

obtain an interesting connection between shear modulus and short-time frequency as 𝛽𝐺𝑑3 ∝

𝜙𝑔(𝑑)𝜔loc𝜏0. 

0.5 0.6 0.7

101

102

103

104


lo

c
 0



 Method I

 Method II

 Method III
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101
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Fig. 6 Volume fraction dependence of the dimensionless localization frequency, 𝜔loc𝜏0 ≡ 𝜏0/𝜏𝑙𝑜𝑐 , based on the 3 

theoretical Methods I, II and III described in the text. (Inset) Same display as in the main frame but with red and green 

data vertically shift up by a multiplier 1.25 and 1.7, respectively. 
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For further perspective, we note that in the framework of NLE theory, an analytic 

relationship between the localization length and the contact value 𝑔(𝑑) was deduced (58) as  

𝑑2

𝑟𝑙𝑜𝑐
2 ∝ 𝜙2𝑔4(𝑑) . Combining this relation with the above results of 𝛽𝐺𝑑3 ≈

9

5𝜋

𝜙𝑑2

𝑟𝑙𝑜𝑐
2  and 

𝜔loc𝜏0=
𝑑2

2𝑔(𝑑)𝑟𝑙𝑜𝑐
2 , we predict that both the elastic shear modulus and the short time dimensionless 

frequency 𝜔loc𝜏0 obey a power law relationship with the contact value 𝑔(𝑑). This is a physically 

appealing result given that the rate of collisions in a hard sphere fluid scales with the contact value, 

and that stresses in hard sphere fluids are associated with impulsive “forces” and hence particles 

being in contact. This consistency physically explains why 𝛽𝐺𝑑3 and 𝜔loc𝜏0 behave so similarly 

in Fig. 4 and Fig. 5, e.g., slope change in the two exponential growth laws and crossover position.  

Furthermore, by combining the above analytic relations we obtain 𝛽𝐺𝑑3 ∝

𝜙𝑔(𝑑)𝜔loc𝜏0=𝜙0.33(𝜔loc𝜏0)1.33. Within the theory, this power law relationship between 𝐺 and 

𝜔loc𝜏0 is easy to test based on numerical calculations, as shown in Fig. 7(b), where one sees it 

works extremely well, although the power law exponent in numerical calculation is slightly larger, 

~1.53. To validate this power law prediction further, we plot the HF crossover modulus obtained 

from experiments (Gcr-HF) as a function of the crossover frequency (ωcr_HF) in Fig. 7(a). 

Remarkably the data do obey a power law relation with an exponent of 1.25, modestly lower than 

the numerically and analytically obtained values of ~1.53 and ~1.33, respectively. 
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Fig. 7 Modulus at the high frequency crossover as a function of the corresponding frequency in (a) experimental (red 

solid squares) and (b) theoretical (black open circles) data. The plot verifies the theoretically inspired power law 

relationship between dimensionless shear modulus and 𝜔loc𝜏0. Solid lines indicate the power law fits with slope 
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values as indicated. Vertical arrows in (a) indicate the characteristic volume fractions, 𝜙ons and 𝜙s, discussed in the 

text. The shaded area in (a) indicates the lower volume fraction regime data shown also in Fig. 4.  

 

Given the origin of the analytical theoretical relations deduced above, we suggest that they 

may be relevant to other spherical particle systems with different interparticle interactions, for 

example in dense suspensions sticky spheres and perhaps thermal liquids.  However, it is often 

difficult to measure the contact value 𝑔(𝑑) experimentally for nanoparticle or colloidal fluids, and 

essentially impossible for thermal liquids. Moreover, strong repulsive intermolecular interactions 

are generally not literally hard core. In the latter case, one could replace 𝑔(𝑑) with the first 

maximum value of g(r). Future experiments can test the power law relationship of Fig. 7 in other 

complex systems such as viscous molecular liquids.   

  

Long-time dynamics: experiment and theory  

 Contrary to the high frequency crossover, the LF crossover shifts to shorter times as volume 

fraction is decreased and hence becomes visible in the frequency range of the ARES rheometer, as 

shown in Fig. 8 for the volume fraction of 0.539. This shift is due to cage escape as these events 

become faster and more frequent. Consequently, as ϕ is decreased, the two crossovers tend to 

approach each other along the frequency axis until they merge. This behavior is in analogy with 

molecular glass formers, where the slow glassy α-mode and the more fluid-like β-mode timescales 

converge at sufficiently high temperature above the kinetic glass transition temperature (67).  

The LF and HF crossover times and their merging point as derived from LVE 

measurements are shown in Fig. 9(a). For comparison, the short and long characteristic inverse 

times, 1/τloc and 1/τhop as calculated using Kramers mean first passage time theory within the NLE 

framework and which, as discussed above, arise from different parts of the spatially-resolved 

dynamic free energy, are also shown in Fig. 9(b). As mentioned earlier, the mean α process 

hopping time τhop is calculated from the same formula as the localization time (τloc in Eq. (7)) 

(68,69) but the integration range is from rloc to rB corresponding to the displacement required for 

the particle to surmount the entropic barrier in Fig. 2(a) per activated hopping dynamics. Indeed, 

the microscopic times τloc and τhop increase and decrease, respectively, with dilution until they 

become equal at ϕ ≈ 0.43, the NMCT transition point. At this volume fraction (merging point 
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derived from theory) the barrier approaches zero, and in its vicinity the barrier is less than kBT and 

hence the idea of activated dynamics loses its physical meaning.  

Overall, the theoretical results are in good agreement with the experimental observations 

considering the practical uncertainties stemming from aging of low frequency dynamics, ϕ 

determination, and errors associated to the measurement itself. We interpret this volume fraction 

deduced from the theory as defining the onset or emergence of dynamic caging, ϕons. The 

corresponding experimentally-deduced value where the two cross-over frequencies merge takes 

place at around 0.53 (with distance from RCP, ϕRCP-ϕ = 0.14) for the present polydisperse sample. 

We note that this is comparable with the freezing volume fraction of 0.494 (where ϕRCP-ϕ = 0.146) 

for monodisperse hard spheres (70,71). Therefore, freezing as deduced from the experimental 

linear viscoelasticity data and the onset of cage formation volume fraction, ϕons, as determined 

from the theoretical model, seems to coincide to leading order with the merging of the two 

characteristic times scales of the in-cage localization and out-of-cage escape.  

We note that the merging point in the experimental and theoretical data takes place at 

similar, but not the same, volume fractions. The reason is well known, the NMCT predicts the 

dynamic crossover to activated motion at a quantitatively too low volume fraction due to its single 

particle nature.  This theoretical point has been analyzed in great depth long ago (40,46). Moreover, 

the theory studies monodisperse hard spheres, while the experiments employ polydisperse samples 

which generically delay the emergence of slow dynamics to higher volume fractions. From the 

NLE perspective, for ϕ lower than the crystallization volume fraction the hard sphere suspension 

behaves in a more liquid-like manner since activated caging effects are not really important 

because the entropic barrier is only of order the thermal energy or less. In this regime, the non-

self-consistently determined (55) friction associated with independent binary collisions and weak-

caging are dominant. By the same token, from the theoretical perspective ϕons marks a dynamic 

crossover that signals the onset of a barrier larger than kBT, and a nontrivial separation of the 

minimum and maximum values of the dynamic free energy. Hence, this is the minimum volume 

fraction where short- and long-time dynamics begin to be separated by a caging plateau-like 

feature, although in practice clear observation of such a separation requires a barrier well beyond 

1-2 kBT, and hence a volume fraction beyond 0.5.  

Below, but still near, ϕons, experiment and theory agree that a continuous relaxation is 

observed, with short and long-time diffusion still distinguishable but not well separated by a clear 
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caging plateau. Moreover, Ds and DL are comparable (although not identical) and affected by a 

binary collisions, hydrodynamic effects, plus the non-self-consistent weak-caging friction effects 

discussed above (55). Samples with volume fractions lower than ϕons, such as the sample with ϕ = 

0.449 in Fig. 8, exhibit no moduli crossover, i.e. they behave in a liquid-like manner with G΄΄ > 

G΄ at all timescales. Nevertheless, despite the absence of a moduli crossover, the LVE spectrum is 

not featureless; the moduli approach more at a certain frequency where tan(δ) attains a minimum 

value (see Appendix A.2). This frequency seems to set a time scale with a different volume fraction 

dependence than the moduli crossover frequency above ϕons. In this regime there is a “loose 

caging” effect imposed by neighboring particles; constraints are very weak, with barrier below 1 

kBT, and this is reflected in the dynamics with an absence of the typical caging plateau but still a 

clear separation of short and long diffusivity. At much lower volume fractions (not probed here) 

Ds and DL approach each other and eventually at the dilute limit become equal to its bare value, 

D0. 
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Fig. 8 Dynamic frequency sweeps of two less concentrated samples with ϕ = 0.539 and ϕ = 0.449 exhibiting moduli 

crossover and tanδ minimum, respectively. Particles are PMMA hard spheres of radius Rh = 264 nm dispersed in 

squalene at T = 23 °C. Measurements were performed using the MCR 501 and ARES rheometers.  
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Fig. 9. Experimental LVE data (a) and the corresponding theoretical calculation (b) of the convergence of short- and 

long-time characteristic dynamical frequencies as a function of volume fraction. Circles denote the LF and squares 

the HF crossover frequency, respectively. Lines represent the exponential dependencies indicated. Red stars indicate 

the merging point of the two crossover frequencies. Vertical arrows indicate the merging point volume fraction ϕons, 

which is found from experiment and theory to be ϕ ≈ 0.53 and ϕ ≈ 0.43 respectively.   

 In addition to the near quantitative agreement of experiment with NLE theory predictions 

for the volume faction dependence of the high frequency cross-over, ωc-HF, and corresponding 

elastic modulus Gc-HF (Fig. 4 & 5), similar agreement between experiments and theory is observed 

for the approach of the frequencies ωc-H and ωc-LF, identified with model predictions for 1/τloc and 

1/τhop respectively. As seen in Fig. 9, these follow an exponential increase (ωc-HF or 1/τloc) or 

decrease (ωc-LF or 1/τhop) as a function of 𝜙 with larger exponents (as in the case of G’), higher for 

the LF (long -time hopping relaxation) than the HF (short-time cage localization time), and 

different in absolute values in experiment and theory. Interestingly we find out that the LF-to-HF 

exponent ratio of roughly a factor of two (110 : 61) observed in experiments is in good accord 

with that predicted by theory  (36.6 : 19.8). 

 

6. Conclusions  

 The characteristic time scales derived from the experimental G΄and G΄΄ data dynamic 

crossovers at high and low frequencies of very dense hard sphere like colloidal suspensions have 

been determined for an extensive range of volume fractions. Overall, very good qualitative (and 

in some cases near quantitative) agreement of the distinctive trends is found with the predictions 

of the microscopic NLE theory, based on the spatially-resolved dynamic free energy concept. The 

characteristic frequencies exhibit a double exponential increase with volume fraction with semi-
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quantitative agreement between experiments and theory.  Two distinct volume fractions have been 

identified as ϕons and ϕs. The former, ϕons, signals the merging point of short- and long-time 

dynamics and, marks the onset of activated caging at a volume fraction of about 0.53 in the present 

polydisperse particle experiments. As expected, this value lies above that predicted by the single 

particle dynamics NLE theory for monodisperse hard sphere fluids. The ϕs is derived in 

experiments from the change of slope in the volume fraction increase of ωc-HF or Gc-HF. It can be 

identified as an experimental dynamic crossover volume fraction that is connected theoretically 

with the emergence within OZ-MV theory of a new type of structural many-body effect as 

manifested in an effective attraction in the direct correlation function, c(r). Both the NLE theory 

and experiments agree that the dynamic crossover for ωc-HF and Gc-HF takes place at 𝜙~𝜙𝑠=0.6. A 

caveat is that this quantitative agreement should be taken cautiously given that the theory analyzes 

monodisperse hard sphere fluids while the experiment studies polydisperse colloidal suspensions. 

Overall, the experiments and theory indicate the existence of a regime above 𝜙𝑠 with a distinct 

character than that of the modestly metastable fluid below 𝜙𝑠, which is crucial at very high volume 

fractions in determining the formation of a long-lived cages with implications for the microscopic 

dynamics and linear rheology. Experimentally this is identifiable with the non-equilibrium glass 

in the sense that the viscoelastic response is solid like at all finite frequencies probed.  On the 

theoretical side it is linked to distinct dynamic, structural and thermodynamic behavior predicted 

to emerge in the equilibrated deeply metastable (or “deep glass”) regime associated with new many 

body packing effects. Thus, the question of whether 𝜙𝑠 can be identified with the experimentally-

deduced kinetic glass transition volume fraction 𝜙𝑔 where hard sphere suspensions are expected 

to transit to an effectively arrested state, and whether this is indeed identical in an observable 

properties sense to the equilibrated deep glass regime analyzed by the theory, remains open. 

What is new in our modeling is the application of NLE theory with the accurate MV (rather 

than the PY) closure employed for the required structural input to make predictions consistent with 

our new experimental findings based on a wide volume fraction range, robust experimental data.  

One can also argue that this agreement provides additional new support for the dynamic free 

energy concept at the heart of NLE theory (which to date has focused on longer time and length 

scale processes than those studied here), and the important structural many body effects captured 

by the MV closure which are critical for quantifying dynamic caging constraints. 
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 The presented new analytical theoretical results have also provided a microscopic physical 

basis for the mechanism of the experimentally observed nearly-identical behaviors of the high 

frequency (short time) localized dynamics timescale and the dynamic shear modulus. The physical 

picture is based on the small distance aspects of the spatially-resolved dynamic free energy, and is 

akin to dynamics describable as a damped, Brownian, localized vibrational-like “downhill” motion 

towards the transient localized state with the frictional resistance related to short time dissipative 

independent binary collisions. 

Constraints by neighbors are evident in the rheological data at volume fractions below ϕons. 

The frequency where the two moduli approach more (τtanδ minima) sets a time scale, and hence 

provides important information that can be explored theoretically and experimentally in future 

work. In a similar manner, a systematic study of HF data of attractive glasses will provide insights 

on cage formation in the presence of competing attractive interparticle interactions and physical 

bond formation which reflects a rich interplay between entropic and enthalpic contributions in 

dynamic cage arrest. Further extension of the present work could aim to correlate ϕons and ϕs with 

other characteristic volume fractions in glass forming suspensions (8) where it has been proposed 

that local domains of cooperatively moving particles become more rigid with increasing ϕ and 

eventually percolate leading to glassy, solid-like response. Overall, we anticipate that the data 

presented here, which were obtained by simple rheological experiments and interpreted in terms 

of NLE theory, will aid in developing a deeper understanding of the dynamical caging mechanism 

and the glass transition phenomenon. 

Finally, we note that previous results based on ECNLE theory (63,72) showed that the 

mean α relaxation time of a deeply supercooled liquid (or metastable glass for hard spheres,  

ϕ>0.58) can be directly related to the dynamic shear modulus in an exponential manner. This result 

emerges from not only τhop involving the local cage barrier, but also inclusion of the longer range 

collective elastic barrier which is of critical importance. Combining this exponential behavior with 

the relationship found here between 1/τloc and the dynamic shear modulus G΄, an exponential 

connection between the mean α relaxation time and 1/τloc is predicted.  Most importantly, both the 

α relaxation time and the fast process relaxation rate 1/τloc can, in principle, be measured 

experimentally over a wide range of degrees of metastability, which can provide an experimental 

test for the proposed exponential connection. This is of particular interest for supercooled thermal 

liquids where measurement of G΄ at relatively high and intermediate temperatures is difficult.  
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Appendix A.1: High frequency scaling and volume fraction consistency 

The weak power law dependence of G΄ is sensitive to local interactions (Schroyen et al. 

2019) and hence is strongly affected by the  steric layer of colloids that induces deviations from 

ideal hard sphere interactions (73,74). The slope of G΄ at frequencies above the HF crossover is 

typically 0.3 for hairy (sterically stabilized) particles (39,75). Furthermore, the volume fraction 

response of the total complex viscosity deduced at high frequencies can be used to determine the 

effective volume fraction of the suspension. 

The uncertainties and the various methods of ϕ determination are well discussed in the 

literature  (76). Given that all samples were prepared from the same initial batch by sequential 

dilution, the uncertainties in the relative ϕ are minimized. The reduced high frequency viscosity is 

given by  𝜂΄𝑟,∞= 𝜂΄∞ 𝜂𝑠⁄  , where ηs = 13.3 mPa s for squalene at 230 C, and 𝜂΄∞ is the limiting 

value of the real part of complex viscosity obtained from oscillatory shear. Once this is known, the 

theoretical volume fraction can be calculated (77,78) according to: 

𝜂΄𝑟,∞=15.78𝑙𝑛 (
1

1-(𝜑 𝜑𝑟𝑐𝑝⁄ )
1/3) -42.47                                                              (9) 

which is valid for 0.60 ≤ ϕ < ϕRCP = 0.67. The denominator portrays the singular behavior 

(divergence) of the high frequency viscosity at random close packing. This empirical equation is 

extended to ϕ as low as 0.6, a crossover point discussed in the main text, as the authors suggest a 

different equation for less concentrated regime (77). The calculated volume fractions from Eq. (9) 

and the experimentally estimated ones for four samples are summarized in table A1. Predictions 

from fitting using Eq. (9) are ~ 0.03 higher than the experimentally estimated values and in 

agreement with findings in our earlier work (39). The modest discrepancy could be attributed to 

our overestimation of 𝜂΄∞ as the plateau value has not been fully attained (Fig. A1) or to particle 

polydispersity that would affect the quantitative accuracy of Εq. (9). However, the relative volume 

fractions are proven to be consistent. This indicates a reasonably good agreement of experimental 

data and theoretical predictions with a potential shift of experimental volume fractions by 0.03 

would not significantly change any of the main findings of this work.  
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Fig. A1 The in-phase with strain rate dynamic viscosity limiting behavior of hard spheres, Rh = 264 nm dispersed in 

squalene at T = 23 °C. The legend indicates the experimentally estimated volume fraction. Data for ϕ = 0.64 (magenta 

symbols) are measured with PZR up to 3000 rad/s.  Horizontal arrows indicate high frequency viscosity determination 

for the two highest volume fractions shown. 

 

Table A1: Volume fraction of four samples: comparison of the experimental estimation with predictions of Eq. (9) 

 

Determined 

from RCP 

Prediction of 

Eq. (9) 

Deviation 

0.64 0.665 0.025 

0.62 0.649 0.029 

0.609 0.639 0.029 

0.6 0.628 0.028 

Appendix A.2: low volume fraction (ϕ< ϕons) samples with no dynamic crossover  

 At volume fractions below ϕons (~ 0.53 in experiments, see Fig. 8) the dynamic moduli do 

not exhibit a crossover, but they do approach each other at a certain frequency and this is clearly 
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detected as a minimum of tanδ=G΄΄/G΄ as shown in Fig. A2(a). This frequency marks a time scale 

defined as τtanδ = 1/ωtanδ. At this time scale the constraints felt by tagged particle due to its 

neighboring particles are maximized, and this can be viewed as a “loose caging effect”. At shorter 

and longer times particle mobility appears higher. Interestingly, ωtanδ exhibits the opposite trend 

from ωc-HF as shown in Fig. A2(b). This suggests that the characteristic time is related with the 

transition from in-cage (β-relaxation) to out-of-cage (α-relaxation) motion. Below ϕons this is 

identified in experiments by τtanδ increasing with φ, whereas above ϕons, ωc-HF is related with the 

time scale of cage exploration decreases with φ as shown in Fig. 8. Such non-monotonic behavior, 

with a maximum at ϕons, is in reminiscent of the time scale τB determined from dynamic light 

scattering data (or from the self-intermediate scattering function) as the transition time scale 

between α and β-relaxations around the glass transition volume fraction by van Megen & 

Underwood (79). 
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Fig. A2 LVE data for samples with ϕ < ϕons = 0.54 where no G΄, G΄΄ crossover is exhibited a) loss angle tangent 

dependence on angular frequency; different φ, as indicated, increase as shown by solid black arrow; vertical arrow 

indicates the minimum of tanδ (for φ=0.45) where the ωtanδ is determined. b) Frequency of the minimum in tanδ plotted 

as a function of ϕ. The dashed line is best data fit.  
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