Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Raman imaging (RI) is an outstanding technique that enables molecular-level medical diagnostics and therapy assessment by providing characteristic fingerprint and morphological information about molecules. However, obtaining high-quality Raman images generally requires a long acquisition time, up to hours, which is prohibitive for RI applications of timely cytopathology and histopathology analyses. To address this issue, image super-resolution (SR) based on deep learning, including convolutional neural networks and transformers, has been widely recognized as an effective solution to reduce the time required for achieving high-quality RI. In this study, a locality enhanced transformer network (LETNet) is proposed to perform Raman image SR. Specifically, the general architecture of the transformer is adopted with the replacement of self-attention by convolution to generate high-fidelity and detailed SR images. Additionally, the convolution in the LETNet is further optimized by utilizing depth-wise convolution to improve the computational efficiency of the model. Experiments on hyperspectral Raman images of breast cancer cells and Raman images of a few channels of brain tumor tissues demonstrate that the LETNet achieves superior 2×, 4×, and 8× SR with fewer parameters compared with other SR methods. Consequently, high-quality Raman images can be obtained with a significant reduction in time, ranging from 4 to 64 times. Overall, the proposed method provides a novel, efficient, and reliable solution to expedite high-quality RI and promote its application in real-time diagnosis and therapy.

Graphical abstract: Acceleration of high-quality Raman imaging via a locality enhanced transformer network

Page: ^ Top