Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The development of electrocatalytic synthetic methods hinges on efficient molecular catalysts. Triarylamines are well-known redox catalysts because of the good stability of their corresponding amine radical cations. Herein we show that tris(4-(tert-butyl)phenyl)amine decomposes unexpectedly during electrolysis in MeOH/THF to afford a tetraarylhydrazine, 1,1,2,2-tetrakis(4-(tert-butyl)phenyl)hydrazine. In addition, we have applied this tetraarylhydrazine, which is either preprepared or formed in situ from tris(4-(tert-butyl)phenyl)amine, as an electrocatalyst for the synthesis of imidazopyridines and related N-heteroaromatic compounds through intramolecular [3 + 2] annulation. This metal-free electrocatalytic method provides straightforward access to the N-heteroaromatic compounds from readily available materials without the need for external chemical oxidants.

Graphical abstract: Discovery of a tetraarylhydrazine catalyst for electrocatalytic synthesis of imidazo-fused N-heteroaromatic compounds

Page: ^ Top