Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Neutral electrosynthesis of H2O2via the 2e ORR is attractive for numerous applications, but the low activity and high cost of electrocatalysts have become important constraints. Therefore, the development of cheap and efficient electrocatalysts for the 2e ORR is necessary. Herein, we report the embedding of transition metal single atoms (TM SAs) in g-C3N4 nanosheets (CNNS). The introduction of TM SAs increases the N–C[double bond, length as m-dash]N content and reduces the C–C/C[double bond, length as m-dash]C content in CNNS, which contributes to the increased selectivity of TM SA/CNNS for the 2e ORR. TM SA is the main reason for the enhanced activity of the 2e ORR. Based on the results obtained by replacing a series of TM SA, the Ni0.10 SA/CNNS with optimal N–C[double bond, length as m-dash]N content exhibited the best selectivity (∼98%) and highest yield of H2O2 (∼503 mmol gcat−1 h−1), which is ∼14.6 times higher than that of CNNS (∼34.4 mmol gcat−1 h−1). Other TM SA/CNNS also exhibited high activity and selectivity. This study demonstrates the ability of TM SA to modulate the selectivity and activity of CNNS, making it a promising candidate for the 2e ORR and providing more reference ideas for the preparation of H2O2.

Graphical abstract: Transition metal single atom-optimized g-C3N4 for the highly selective electrosynthesis of H2O2 under neutral electrolytes

Page: ^ Top