Volume 176, 2014

Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation

Abstract

Rechargeable metallic lithium batteries are the ultimate solution to electrochemical storage due to their high theoretical energy densities. One of the key technological challenges is to control the morphology of metallic lithium electrode during electrochemical dissolution and deposition. Here we have investigated the morphology change of metallic lithium electrode after charging and discharging in nonaqueous batteries by ex situ SEM techniques from a top view. Formation of the hole structure after lithium dissolution and the filling of dendrite-like lithium into the holes has been observed for the first time. In addition, an in situ SEM investigation using an all-solid Li/Li2O/super aligned carbon nanotube set-up indicates that lithium ions could diffuse across through the surface oxide layer and grow lithium dendrites after applying an external electric field. The growth of lithium dendrites can be guided by electron flow when the formed lithium dendrite touches the carbon nanotube.

Associated articles

Article information

Article type
Paper
Submitted
04 Jun 2014
Accepted
14 Aug 2014
First published
14 Aug 2014

Faraday Discuss., 2014,176, 109-124

Author version available

Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation

W. Li, H. Zheng, G. Chu, F. Luo, J. Zheng, D. Xiao, X. Li, L. Gu, H. Li, X. Wei, Q. Chen and L. Chen, Faraday Discuss., 2014, 176, 109 DOI: 10.1039/C4FD00124A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements