Volume 173, 2014

Bulk properties of solution-synthesized chevron-like graphene nanoribbons

Abstract

Graphene nanoribbons (GNRs) have received a great deal of attention due to their promise for electronic and optoelectronic applications. Several recent studies have focused on the synthesis of GNRs by the bottom-up approaches that could yield very narrow GNRs with atomically precise edges. One type of GNRs that has received a considerable attention is the chevron-like GNR with a very distinct periodic structure. Surface-assisted and solution-based synthetic approaches for the chevron-like GNRs have been developed, but their electronic properties have not been reported yet. In this work, we synthesized chevron-like GNRs in bulk by a solution-based method, characterized them by a number of spectroscopic techniques and measured their bulk conductivity. We demonstrate that solution-synthesized chevron-like GNRs are electrically conductive in bulk, which makes them a potentially promising material for applications in organic electronics and photovoltaics.

Associated articles

Article information

Article type
Paper
Submitted
13 Jun 2014
Accepted
03 Jul 2014
First published
04 Jul 2014

Faraday Discuss., 2014,173, 105-113

Bulk properties of solution-synthesized chevron-like graphene nanoribbons

T. H. Vo, M. Shekhirev, A. Lipatov, R. A. Korlacki and A. Sinitskii, Faraday Discuss., 2014, 173, 105 DOI: 10.1039/C4FD00131A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements