Issue 7, 2015

Ammonia borane–polyethylene oxide composite materials for solid hydrogen storage

Abstract

Co-electrospinning ammonia borane (AB) and polyethylene oxide (PEO) has created a unique crystal phase that promotes faster hydrogen release from AB below its melting temperature with no incubation time. Integral fibres have been produced containing 75%, 50% and 25% AB by weight. As the PEO content was increased, the onset temperature of dehydrogenation was reduced from 110 °C for pristine AB to 85 °C for the 25% AB fibres. The new phase is characterised by hydrogen bonding between the hydridic hydrogen atoms bonded to the nitrogen atom in AB and the oxygen atom in the PEO backbone. Additionally, the usual foaming of AB during hydrogen release was effectively controlled by the addition of PEO. Some impurities which accompany the hydrogen release – ammonia and diborane – are reduced, however, borazine levels in the gas stream were observed to increase during the loss of the 2nd hydrogen equivalent. Nevertheless, co-electrospun composites of AB and PEO show great promise as a safe, portable and versatile hydrogen storage material.

Graphical abstract: Ammonia borane–polyethylene oxide composite materials for solid hydrogen storage

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
04 Dec 2014
Accepted
02 Jan 2015
First published
02 Jan 2015

J. Mater. Chem. A, 2015,3, 3683-3691

Ammonia borane–polyethylene oxide composite materials for solid hydrogen storage

A. S. Nathanson, A. R. Ploszajski, M. Billing, J. P. Cook, D. W. K. Jenkins, T. F. Headen, Z. Kurban, A. Lovell and S. M. Bennington, J. Mater. Chem. A, 2015, 3, 3683 DOI: 10.1039/C4TA06657J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements