Issue 117, 2015

Structure–property relationship in lead-free A- and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3–SrTiO3 incipient piezoceramics

Abstract

In this work, a phase diagram of A- and B-site co-substituted 0.96[{Bi0.5 (Na0.84K0.16)}1−xyLixMgy(Ti1−zNbz)O3]–0.04SrTiO3 (abbreviated as LMN-doped BNKT–ST), where x, y and z = 0.00–0.030, was schematically constructed on the basis of crystal structure and electromechanical, dielectric and piezoelectric properties. The underlying mechanism of the compositionally-induced non-ergodic (NR) to ergodic relaxor (ER) phase transition was explored, and emphasis was given on relating the chemically-induced polymorphic structural phase transition to the dynamics of polar nano-regions (PNRs) and their random fields, which strongly affect the dielectric, ferroelectric, piezoelectric and field-induced strain properties of the investigated system. X-ray diffraction patterns revealed that LMN doping resulted in a transition from coexistence of rhombohedral and tetragonal phases to a pseudocubic phase. Both the dielectric constant and the ferroelectric–relaxor transition (TF–R ∼ 100 °C) temperature decreased with an increase in LMN content. The piezoelectric and ferroelectric responses of the BNKT–ST ceramics were significantly decreased by the addition of LMN. However, the destabilization of the piezoelectric and ferroelectric properties was accompanied by significant enhancements in the bipolar and unipolar strains. A large electric-field-induced strain (S = 0.28%) and a corresponding dynamic piezoelectric constant (Smax/Emax) of 560 pm V−1 were observed under the driving field of 5 kV mm−1 when 1.5 mol% LMN was substituted on respective sites. This significant strain enhancement at this composition, with LMN = 0.015, may be attributed to both the field-induced reversible structural transition and the compositionally-induced NR to ER phase transition. The composition- and temperature-dependence of the energy storage density (W) were studied to demonstrate the practicability of the LMN-doped BNKT–ST. It was found that the addition of LMN enhanced the difference between maximum polarization and remnant polarization, resulting in an improvement of the energy storage properties. For the composition with LMN = 0.020, a nearly temperature-invariant large recoverable energy density (W = 0.70 J cm−3) was achieved under 5.5 kV mm−1 in the wide temperature range of 100–150 °C. These properties indicate that the synthesized system might be a promising lead-free candidate for actuator and energy storage capacitor applications.

Graphical abstract: Structure–property relationship in lead-free A- and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3–SrTiO3 incipient piezoceramics

Associated articles

Article information

Article type
Paper
Submitted
16 Sep 2015
Accepted
26 Oct 2015
First published
29 Oct 2015

RSC Adv., 2015,5, 96953-96964

Structure–property relationship in lead-free A- and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3–SrTiO3 incipient piezoceramics

R. A. Malik, A. Hussain, A. Zaman, A. Maqbool, J. U. Rahman, T. K. Song, W. Kim and M. Kim, RSC Adv., 2015, 5, 96953 DOI: 10.1039/C5RA19107F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements