Issue 6, 2017

Electrochemical energy storage by aluminum as a lightweight and cheap anode/charge carrier

Abstract

Various lightweight metals such as Li, Na, Mg, etc. are the basis of promising rechargeable batteries, but aluminium has some unique advantages: (i) the most abundant metal in the Earth's crust, (ii) trivalent charge carrier storing three times more charge with each ion transfer in comparison with Li, (iii) the volumetric capacity of the Al anode is four times higher than that of Li while their gravimetric capacities are comparable, (iv) employing a metallic Al anode does not have a major safety risk as is the case for alkali metals. However, there are serious obstacles to the practical development of Al batteries such as the complicated nature of trivalent Al3+ intercalation into the cathode of Al-ion batteries and corrosion of the metallic Al anode in aqueous electrolytes. Owing to the highly charged nature of small Al3+ ions, the diffusing species are indeed the Al complexed ions, which might be the intercalating ions in the solid-state too. The present manuscript reviews the current status of various aluminum batteries to narrate their unique potentials while highlighting the issues that should be addressed at this stage. Although Al–air batteries have a long history going back to the 1960s, the focus of this manuscript is on Al-ion batteries including Al–sulfur batteries, but other possibilities for electrochemical energy storage by Al charge carriers such as Al redox batteries, Al supercapacitors, etc. will be reviewed too. In the latter case, it seems the pseudocapacitance is more practical than intercalation for the case of Al3+ ions. Furthermore, the application of Al anodes in lithium-ion batteries is briefly described as the anode performance is similar to their application in Al batteries.

Graphical abstract: Electrochemical energy storage by aluminum as a lightweight and cheap anode/charge carrier

Associated articles

Article information

Article type
Review Article
Submitted
24 Jan 2017
Accepted
13 Apr 2017
First published
20 Apr 2017

Sustainable Energy Fuels, 2017,1, 1246-1264

Electrochemical energy storage by aluminum as a lightweight and cheap anode/charge carrier

A. Eftekhari and P. Corrochano, Sustainable Energy Fuels, 2017, 1, 1246 DOI: 10.1039/C7SE00050B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements