Volume 218, 2019

Perspectives on the future of multi-dimensional platforms

Abstract

Two-dimensional liquid chromatography (2D-LC) formats have emerged to help address separation problems that are too complex for conventional one-dimensional LC. There are a number of obstacles to the proliferation of 2D-LC that are gradually being removed. Reliable commercial instrumentation has become available and data analysis software is being improved. Detector-sensitivity and phase-system compatibility issues can largely be solved by using active-modulation strategies. The remaining challenge, developing good and fast 2D-LC methods within a reasonable time, may be solved with smart algorithms. The technology platform that has been developed for 2D-LC also creates a number of other possibilities. Between the two separation stages, all kinds of physical (e.g. dissolution) or chemical (e.g. enzymatic or light-induced degradation) processes can be made to take place, allowing a wide variety of experiments to be performed within a single, efficient and automated analysis. All these developments are discussed in this paper and a number of critical issues are identified. A practical example, the characterization of polysorbates by high-resolution comprehensive two-dimensional liquid chromatography in combination with high-resolution mass spectrometry, is described as a culmination of recent developments in 2D-LC and as an illustration of the current state of the art.

Graphical abstract: Perspectives on the future of multi-dimensional platforms

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
07 Dec 2018
Accepted
28 Jan 2019
First published
28 Jan 2019

Faraday Discuss., 2019,218, 72-100

Perspectives on the future of multi-dimensional platforms

G. Groeneveld, Bob W. J. Pirok and P. J. Schoenmakers, Faraday Discuss., 2019, 218, 72 DOI: 10.1039/C8FD00233A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements