Issue 10, 2018

Icariin and icaritin recover UVB-induced photoaging by stimulating Nrf2/ARE and reducing AP-1 and NF-κB signaling pathways: a comparative study on UVB-irradiated human keratinocytes

Abstract

Icariin (ICA) and icaritin (ICT) exhibit many pharmacological functions including anti-osteoporosis, anti-cardiovascular, and anti-cancer activities; however, there are few comprehensive studies that track the detailed effects on UVB-induced photoaging. The recovery effects of ICA and ICT were investigated in UVB-irradiated human keratinocytes (HaCaTs). The results indicated that ICT and ICA showed strong radical scavenging activity, and the reactive oxygen species (ROS) scavenging activity of ICT was superior. UVB-induced matrix metalloproteinase-1 (MMP-1) expression was blocked by ICA via the inhibition of mitogen-activated protein kinase/activator protein 1 (MAPK/AP-1), which directly reduced extracellular matrix (ECM) degradation. ICT activated nuclear factor erythroid 2 related factor 2 (Nrf2) to improve the anti-oxidative stress capacity and suppress nuclear factor-κB (NF-κB) activation, decreasing vascular endothelial growth factor (VEGF) protein, and inflammatory cytokines induced ECM degrading enzyme secretion. Moreover, ICT was more advantageous to improve transforming growth factor beta 1 (TGF-β1) and procollagen type I expression than ICA, promoting the synthesis of collagen. Therefore, ICA and ICT have potential to treat UVB-induced oxidative stress, inflammation and photoaging, and will be posited as a novel strategy to alleviate photodamage.

Graphical abstract: Icariin and icaritin recover UVB-induced photoaging by stimulating Nrf2/ARE and reducing AP-1 and NF-κB signaling pathways: a comparative study on UVB-irradiated human keratinocytes

Associated articles

Article information

Article type
Paper
Submitted
24 Apr 2018
Accepted
03 Sep 2018
First published
10 Sep 2018

Photochem. Photobiol. Sci., 2018,17, 1396-1408

Icariin and icaritin recover UVB-induced photoaging by stimulating Nrf2/ARE and reducing AP-1 and NF-κB signaling pathways: a comparative study on UVB-irradiated human keratinocytes

E. Hwang, P. Lin, H. T. T. Ngo, W. Gao, Y. Wang, H. Yu and T. Yi, Photochem. Photobiol. Sci., 2018, 17, 1396 DOI: 10.1039/C8PP00174J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements