Issue 70, 2018

Efficient in situ N-heterocyclic carbene palladium(ii) generated from Pd(OAc)2 catalysts for carbonylative Suzuki coupling reactions of arylboronic acids with 2-bromopyridine under inert conditions leading to unsymmetrical arylpyridine ketones: synthesis, characterization and cytotoxic activities

Abstract

N,N-Substituted benzimidazole salts were successfully synthesized and characterized by 1H-NMR, 13C {1H} NMR and IR techniques, which support the proposed structures. Catalysts generated in situ were efficiently used for the carbonylative cross-coupling reaction of 2 bromopyridine with various boronic acids. The reaction was carried out in THF at 110 °C in the presence of K2CO3 under inert conditions and yields unsymmetrical arylpyridine ketones. All N,N-substituted benzimidazole salts 2a–i and 4a–i studied in this work were screened for their cytotoxic activities against human cancer cell lines such us MDA-MB-231, MCF-7 and T47D. The N,N-substituted benzimidazoles 2e and 2f exhibited the most cytotoxic effect with promising cytotoxic activity with IC50 values of 4.45 μg mL−1 against MDA-MB-231 and 4.85 μg mL−1 against MCF7 respectively.

Graphical abstract: Efficient in situ N-heterocyclic carbene palladium(ii) generated from Pd(OAc)2 catalysts for carbonylative Suzuki coupling reactions of arylboronic acids with 2-bromopyridine under inert conditions leading to unsymmetrical arylpyridine ketones: synthesis, characterization and cytotoxic activities

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2018
Accepted
07 Nov 2018
First published
05 Dec 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 40000-40015

Efficient in situ N-heterocyclic carbene palladium(II) generated from Pd(OAc)2 catalysts for carbonylative Suzuki coupling reactions of arylboronic acids with 2-bromopyridine under inert conditions leading to unsymmetrical arylpyridine ketones: synthesis, characterization and cytotoxic activities

N. Touj, A. S. Al-Ayed, M. Sauthier, L. Mansour, A. H. Harrath, J. Al-Tamimi, I. Özdemir, S. Yaşar and N. Hamdi, RSC Adv., 2018, 8, 40000 DOI: 10.1039/C8RA08897G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements