Issue 13, 2019

Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core–shell nanoparticles

Abstract

Multifunctional nanoparticles with a magnetic core and gold shell structures are emerging multi-modal imaging probes for disease diagnosis, image-guided therapy, and theranostic applications. Owing to their multi-functional magnetic and plasmonic properties, these nanoparticles can be used as contrast agents in multiple complementary imaging modalities. Magnetic particle imaging (MPI) is a new pre-clinical imaging system that enables real-time imaging with high sensitivity and spatial resolution by detecting the dynamic responses of nanoparticle tracers. In this study, we evaluated the dynamic magnetic properties and MPI imaging performances of core–shell nanoparticles with a magnetic core coated with a gold shell. A change in AC hysteresis loops was detected before and after the formation of the gold shell on magnetic core nanoparticles, suggesting the influence of the core–shell interfacial effect on their dynamic magnetic properties. This alteration in the dynamic responses resulted in an enhancement of the MPI imaging capacity of magnetic nanoparticles. The gold shell coating also enabled a simple and effective functionalization of the nanoparticles with a brain glioma targeting ligand. The enhanced MPI imaging capacity and effective functionality suggest the potential application of the magnetic-gold core–shell nanoparticles for MPI disease diagnostics.

Graphical abstract: Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core–shell nanoparticles

Associated articles

Article information

Article type
Paper
Submitted
08 Jan 2019
Accepted
24 Feb 2019
First published
25 Feb 2019

Nanoscale, 2019,11, 6489-6496

Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core–shell nanoparticles

A. Tomitaka, S. Ota, K. Nishimoto, H. Arami, Y. Takemura and M. Nair, Nanoscale, 2019, 11, 6489 DOI: 10.1039/C9NR00242A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements