Electroosmosis as a probe for electrostatic correlations
Abstract
We study the role of ionic correlations on the electroosmotic flow in planar double-slit channels, without salt. We propose an analytical theory, based on recent advances in the understanding of correlated systems. We compare the theory with mean-field results and validate it by means of dissipative particle dynamics simulations. Interestingly, for some surface separations, correlated systems exhibit a larger flow than predicted by mean-field. We conclude that the electroosmotic properties of a charged system can be used, in general, to infer and weight the importance of electrostatic correlations therein.