Issue 13, 2021

Selenium-driven enhancement of synergistic cancer chemo-/radiotherapy by targeting nanotherapeutics

Abstract

To overcome drug resistance in hypoxic tumors and the limitations of radiation impedance and radiation dose, we developed a nano-radiosensitizer to improve the efficacy of cancer radiotherapy. We used multifunctional mesoporous silica nanoparticles (MSNs) as the carriers for a novel anticancer selenadiazole derivative (SeD) and modified its surface with folic acid (FA) to enhance its cervical cancer-targeting effects, forming the nanosystem named SeD@MSNs-FA. Upon radiation, SeD@MSNs-FA inhibits the growth of cervical cancer cells by inducing apoptosis through the death receptor-mediated apoptosis pathway and S phase arrest, significantly improving the sensitivity of cervical cancer cells to X-ray radiation. The combined activity of SeD@MSN-FA and radiation can promote excessive production of intracellular reactive oxygen species (ROS) and induce cell apoptosis by affecting p53, protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) pathways. Furthermore, SeD@MSNs-FA can effectively inhibit tumor growth of xenografted HeLa tumors in nude mice. The toxicity analysis of SeD@MSNs-FA nanoparticles in vivo and the histological analysis performed in the mouse model showed that under the current experimental conditions, the nanoparticles induced no significant damage to the heart, liver, spleen, lungs, kidneys, or other major organs. Taken together, this study provides a translational nanomedicine-based strategy for the simultaneous chemo- and radiotherapy of cervical cancer and sheds light on potential mechanisms that can be used to overcome radiotherapeutic resistance.

Graphical abstract: Selenium-driven enhancement of synergistic cancer chemo-/radiotherapy by targeting nanotherapeutics

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
03 Mar 2021
Accepted
13 Apr 2021
First published
15 Apr 2021

Biomater. Sci., 2021,9, 4691-4700

Selenium-driven enhancement of synergistic cancer chemo-/radiotherapy by targeting nanotherapeutics

X. Liu, Z. Yuan, Z. Tang, Q. Chen, J. Huang, L. He and T. Chen, Biomater. Sci., 2021, 9, 4691 DOI: 10.1039/D1BM00348H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements