Issue 18, 2021

Surface-dependent band structure variations and bond-level deviations in Cu2O

Abstract

Density functional theory (DFT) calculations have been performed on 1 to 9 layers of Cu2O (100), (111), and (110) planes to further understand the electronic band structures and the origin of the facet-dependent properties of Cu2O crystals. The (100) planes show an invariant band structure with a constant band gap of 1.787 eV like that of a primitive cell. The (111) planes present a periodicity of every three layers with band gaps varying between zero and 1.787 eV. An unusual periodicity of every two layers has been found for the (110) planes oscillating between 1.787 eV and very small band gaps including a zero band gap. By comparing the valence band edges of different plane layers and the position of the Fermi level in the density of states (DOS) diagrams, relative valence band bending of the Cu2O {100}, {111}, and {110} surfaces can be drawn to explain their strongly facet-dependent electrical conductivity properties. Moreover, while the (100) planes show a fixed crystal lattice with a tunable number of planes, the calculations identify slight bond length deviations and bond distortion for the (111) and (110) planes. The partial density of states (PDOS) diagrams also reveal (111) and (110) plane layer-dependent variations in the frontier orbital electron energy distribution. The structural perturbations at crystal surfaces can yield different barrier heights to charge transport across the {100}, {111}, and {110} faces, and photons of different wavelengths should get absorbed in the thin surface layer to produce the observed optical facet effects. Such lattice perturbations should be present in other semiconductor materials as surface-dependent behaviors are broadly observable in many semiconductors.

Graphical abstract: Surface-dependent band structure variations and bond-level deviations in Cu2O

Associated articles

Supplementary files

Article information

Article type
Research Article
Submitted
09 Jun 2021
Accepted
21 Jul 2021
First published
22 Jul 2021

Inorg. Chem. Front., 2021,8, 4200-4208

Surface-dependent band structure variations and bond-level deviations in Cu2O

C. Tan and M. H. Huang, Inorg. Chem. Front., 2021, 8, 4200 DOI: 10.1039/D1QI00733E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements