Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The Haber–Bosch process for industrial-scale NH3 production suffers from harsh conditions and serious CO2 release. Electrochemical N2 reduction is an alternative approach to synthesize NH3 under ambient conditions, but it requires highly-efficient electrocatalysts for the N2 reduction reaction (NRR). In this Communication, we demonstrate that WO3 nanosheets rich in oxygen vacancies (R-WO3 NSs) exhibit greatly enhanced NRR performances. In 0.1 M HCl, such R-WO3 NSs achieve a large NH3 yield of 17.28 μg h−1 mgcat.−1 and a high faradaic efficiency of 7.0% at −0.3 V vs. a reversible hydrogen electrode, much superior to the WO3 nanosheets deficient in oxygen vacancies (6.47 μg h−1 mgcat.−1 and 1.02%). Remarkably, R-WO3 NSs also show high electrochemical stability.

Graphical abstract: WO3 nanosheets rich in oxygen vacancies for enhanced electrocatalytic N2 reduction to NH3

Page: ^ Top