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Describing dynamic electron correlation beyond a
large active space†

Yinxuan Song,a Yifan Cheng*b and Haibo Ma *c

The pursuit of quantitatively accurate electron correlation calculations for realistic large strongly

correlated systems presents significant theoretical and computational challenges. These challenges stem

primarily from two fundamental aspects: the inherent complexity of treating static correlations within

extensive active spaces and the additional difficulty of incorporating dynamic correlation effects from

the external space. In this comprehensive perspective, we systematically review and analyze state-of-

the-art methodologies that address dynamic correlation beyond large active spaces, with particular

emphasis on approaches that circumvent the computational burden associated with high-order reduced

density matrices. Through careful classification, we have organized these advanced techniques into

seven distinct categories. To illustrate the practical application and comparative performance of these

newly developed methods, we present a detailed case study involving the calculation of potential energy

curves for the neodymium oxide (NdO) molecule. It is our expectation that this work will not only

provide valuable insights for future multi-reference calculations in large strongly correlated systems but

also stimulate the development of innovative methodologies specifically tailored for handling extensive

active spaces in multi-reference calculations.

1 Introduction

The electronic structure of atoms and molecules is determined
by simultaneous pairwise interactions among electrons and
nuclei. These quantum many-body interactions form the foun-
dation of chemical behaviors and can be fully described by the
solutions of the unrelativistic Schrödinger equation or relati-
vistic Dirac equation. Due to the well-known ‘‘curse of dimen-
sionality’’ difficulty for the quantum many-body systems, one
usually has to resort to approximate rather than exact solutions
to their respective equations. The Hartree–Fock (HF) mean field
theory is the most straightforward and widely used approx-
imate wave function theory (WFT) method. It simplifies the
complex problem of many electrons into a single-electron
problem, depicting the electron’s interaction with its surrounding
electrons as an interaction with an average field. However, to
achieve higher accuracy, it is crucial to adequately describe how
the movement of each electron is influenced by the movements of

the other electrons. This corresponds to the ‘‘electron correlation’’
issue, which is often the largest error source in quantum chem-
istry calculations. It is usually considered that there are two
sources of correlation beyond the mean field single-particle
approximation (Hartree product): symmetry and Coulomb
repulsion.1,2 The first source stems from the collective spin and
permutation symmetry requirements, electrons’ Fermionic char-
acteristics, and is consequently also termed as ‘‘Fermi correla-
tion’’. This can be effectively depicted by HF theory through the
use of Slater determinants instead of simple Hartree products.
Therefore, in modern day’s quantum chemistry community, the
term ‘‘electron correlation’’ is typically used to refer specifically to
the second source of error, known as ‘‘Coulomb correlation’’. The
electron correlation energy is then usually defined as the differ-
ence between the exact full configuration interaction (FCI) energy
of the molecular system and the HF energy, in a given basis set.

The mean field approximation employed in the derivation of
the HF theory assumes independent electron motion, neglecting
instantaneous Coulomb repulsion with dynamic neighboring
electrons. Therefore, HF systematically underestimates the aver-
age distances between electron pairs and thus overestimates the
average electron repulsion energies, which can be observed in
the calculated ground-state potential energy curves of H2 and N2

shown in Fig. 1. This effect is known as ‘‘dynamic correlation’’
because it is directly related to electron’s instantaneous motion,
and it can be efficiently described by single-reference (SR)
electron correlation methods such as the coupled cluster (CC)
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approach or perturbation theory (PT) by considering determi-
nant configurations (CFGs) with electrons excited from occupied
HF orbitals to unoccupied (virtual) orbitals. The dynamic corre-
lation is expected to decrease in the bond dissociated limit due
to the suppressed likelihood of electron repulsion when the two
neutral atoms are spatially well separated from each other.
However, from Fig. 1, one can find that the correlation energy
(energy difference between HF solution and the exact result at the
given basis set) increases from 40 (470) mEh at the equilibrium
structure to 168 (1065) mEh at the dissociated structure with an
inter-atomic distance of 3 Å for H2 (N2). More interestingly, SR
correlation methods shown in Fig. 1, including second-order
Møller–Plesset perturbation (MP2) and coupled cluster singles
and doubles (CCSD) augmented with perturbative triples correc-
tion [CCSD(T)], also cannot correctly describe the energy behaviors
in the bond-dissociation regime. This phenomenon originates
from another Coulomb correlation effect known as ‘‘non-
dynamic correlation’’, also termed ‘‘static correlation’’ or ‘‘strong
correlation’’, because it is not related to electron dynamics. This
issue arises because the wave function in the HF model is
represented by a single Slater determinant, which may not ade-
quately represent the state of specific systems. In certain situa-
tions, such as bond stretching, an electronic state can only
be accurately described by a linear combination of multiple
near-degenerate Slater determinants due to the presence of near-
degenerate frontier molecular orbitals (MOs) constituting a com-
plete active space (CAS). Such static correlations are also often
observed in various conjugated molecules and transition metal
compounds that possess energetically near-degenerate p orbitals
or d/f orbitals, and can be well described by multi-configurational
(MC) quantum chemical methods, such as valence bond (VB)
theory, complete active space configuration interaction (CASCI)
or complete active space self-consistent field (CASSCF).

Quantitatively accurate electron correlation calculations for
realistic large strongly correlated systems are highly challenging,

due to the difficulties of both treating static correlations in a
large active space and incorporating further the dynamic corre-
lation outside the large active space. The first difficulty is
because the dimension of the Hilbert space scales exponentially
with the number of the active orbitals. Nowadays, the largest
exactly solved active space comprises 26 electrons and 23
orbitals, i.e. (26e, 23o), for C3H8/STO-3G with 1.31 trillion
determinants, by virtue of utilizing high-performance distributed
computations on supercomputers.6 In recent decades, advance-
ments in selected configuration interaction (sCI),7–11 quantum
Monte Carlo (QMC),12–14 and density matrix renormalization
group (DMRG)15–19 and others20,21 have significantly enhanced
the computational ability of accurately describing static correla-
tions within very large active spaces, encompassing several tens or
even over 100 active orbitals.4,9,22 These improvements stem from
the screening of important configurations or the compression of
information through iterative renormalization of truncated many-
electron bases. However, to quantitatively comprehend the beha-
viors of strongly correlated molecular systems, it is imperative to
account for both static and dynamic electron correlations. This
requirement necessitates the combination of sCI, QMC or DMRG
as a CASCI solver and traditional multi-reference (MR) methods,
such as MR configuration interaction (MRCI), MR perturbation
theory (MRPT), and MR coupled cluster (MRCC). The MR meth-
ods address both CFGs within the CAS and excited CFGs involving
electron excitations from the CAS to virtual inactive orbitals. To
circumvent the explicit handling of the vast number of excited
configurations in MR computations, the fully internally con-
tracted (FIC) approximation23–25 has been extensively utilized.
Nevertheless, this introduces a new computational challenge due
to the emergence of costly third-order and fourth-order reduced
density matrices (3-RDM, 4-RDM) associated with the CAS. This
limitation confines conventional MR calculations to the small CAS
with less than 20 active orbitals, which is incompatible with the
rapid progression of sCI, QMC and DMRG in managing the large

Fig. 1 Calculated ground-state potential energy curves of (a) H2 and (b) N2 dissociation with the cc-pVQZ basis set via ORCA 4.2.13 unless otherwise
specified. The exact curves are calculated by FCI (H2) and density matrix renormalization group (DMRG)-FCI (N2, m = 1000, using Kylin4), respectively.
The uncontracted MRCISD calculations are performed by BDF.5
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CAS with up to 100 active orbitals. Although the straightforward
implementation of MR methods, such as the MR Møller–Plesset
method (MRMP),26 multi-configuration quasi-degenerate perturba-
tion theory (MC-QDPT)27 and spin-adapted state-specific MRPT
(SA-SSMRPT),28,29 without using FIC approximations can avoid the
use of expensive high-order RDMs, their application to large
systems is also computationally infeasible due to the combinator-
ial explosion of excited configurations. Consequently, a prominent
trend in quantum chemistry for strongly correlated systems is to
develop novel methodologies to capture dynamic correlations
beyond large active spaces without using high-order RDMs.

This perspective focuses on new MR methods for a large CAS
with more than 20 active orbitals and is organized as follows.
Section 2 provides a brief introduction to the widely used
contraction approximations in conventional MR quantum
chemical methods and also discusses about their limitations
in treating a large CAS. Then Sections 3–8 outline recent pro-
gresses for breaking through the bottlenecks of computing
expensive high-order RDMs or including a huge number of
reference CFGs to describe dynamic electron correlation beyond
a large CAS. These developments include approximating high-
order RDMs (Section 3), restricting the summation items
(Section 4), using renormalized many-electron states instead of
primitive CFGs (Section 5), using the effective Hamiltonian
(Section 6), hybridization between MC-WFT and SR-WFT or
density functional theory (Section 7) and using time-dependent
formulation (Section 8). Then a numerical benchmark test for
calculating the potential energy curve of the neodymium oxide
(NdO) molecule by different methods is shown and discussed
in Section 9. Finally, a brief summary and outlook is given in
Section 10.

2 Contraction approximations in
conventional MR quantum
chemical methods

The exponentially increasing number of CAS configurations
quickly leads to a bottleneck in MR calculations. Therefore,
compressing the Hilbert space becomes essential for practical
calculations. A commonly used technique in MR calculations
is the contraction approximation, where certain configurations
are grouped together in advance. The most basic contraction is
the internally contracted (IC) approximation,23–25 in which
configurations with the same excitation pattern are contracted.
This means that the excitation operator acts on the contracted
reference wavefunction rather than on individual configura-
tions. The resulting excited electronic states are formed by
applying the same creation and annihilation operators to
different configurations within the reference space, and the
contraction coefficients are determined by the corresponding
configuration coefficients in the reference wavefunction. Since,
in the original scheme, all configurations in the first order
interaction space (FOIS),30 which can directly couple to the
reference wave function via the Hamiltonian, are contracted,
this approach is often referred to as the fully internally

contracted (FIC) scheme.25 While the FIC approximation
significantly reduces the size of the final matrix to be com-
puted, the cost of computing matrix elements is relatively high.
For instance, calculating matrix elements in the FIC scheme
requires high-order RDMs,

Cab
it

� ��H Ca0b0
t 0u0

��� E
¼ gui0vv0 C0h jÊtuv

v0t 0u0 C0j idaa0dbb0dii0 þ . . . (1)

where ijkl, tuvw, and abcd denote the core, active, and external

spatial MOs, gui0vv0 is the electron integral, and Cpq
rs

�� �
is acquired

as Ê
pq

rs C0j i. The spin-free excitation operator is given by: Ê
pq...

rs... ¼
ÊprÊqs . . . with Êps ¼

P
s
âypsâss. The highest order RDM involved

is the 4-RDM Dtuvw
t 0u0v0w0 � C0h jÊtuvw

t 0u0v0w0 C0j i
� �

, which comes from

the single excitation space (semi-internally excited states):

Cva
tu

� ��Ĥ Cv0a0
t 0u0

��� E
. To avoid the high computational cost brought

by the highest-order RDM from the single excitation space, the
‘‘partially contracted’’ (PC) scheme was further proposed,
including the Werner–Knowles (WK)31,32 and Celani–Werner
(CW)33 schemes. In these schemes, the reference space and
the single excitation space are no longer contracted, and the
CFG basis vectors are fully utilized. This reduces the 4-RDM to a
3-RDM and minimizes the error introduced by the contraction
approximation. However, at the same time, the variational
space once again grows exponentially due to the increase in
configuration basis vectors.

In addition to the FIC and PC internally contracted schemes,
there is another scheme called strong contraction (SC),34,35

commonly used in the n-electron valence state perturbation
theory (NEVPT) method. As its name suggests, in the SC
approximation, the subspaces in the FIC method are further
contracted using electron integrals. Internally contracted elec-
tronic states with the same excitation pattern in the active space
are multiplied by integrals and summed to be further con-
tracted, and accordingly there are no more active space indices
in the final SC electronic states.

Another contraction approximation, in contrast to internal
contraction, is the external contraction (EC)36 approximation.
After determining the contraction coefficients through second-
order perturbation, configurations in the FOIS with the same
external space are contracted into a single electronic state.
Therefore, the size of the external space does not affect the
dimensionality of the variational space after EC contraction,
making it particularly suitable for large basis set calculations.
However, since its computational cost is directly related to the
size of the reference space, the cost becomes prohibitive as the
active space grows. It often needs to be combined with the idea
of selected CI to handle large active space calculations.

3 Approximating high-order RDMs

The many-particle correlation information stored in an n-RDM
can be partitioned into two parts, an irreducible part (the cumu-
lant) describing genuine n-particle correlations and a reducible
part describing remaining n-particle correlations as products of
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lower-rank cumulants.37,38 In typical situations, genuine many-
particle correlations beyond a certain rank can be neglected,
making it possible to approximate high-order RDMs using their
cumulant expansion. Under such cumulant approximations,
an n-RDM (n = 3, 4) is written using the anti-symmetrized
products among the l-RDMs (l = 1, 2, . . ., n � 1) along with
neglecting the n-rank cumulant. For example, 4-RDMs can be
decomposed as:39

Dtuvw
t 0u0v0w0 ¼ Dtuvw

t 0u0v0w0 þ 16Dtuv
t 0u0v0 ^Dw

w0 þ 18Dtu
t 0u0 ^Dvw

v0w0

� 144Dtu
t 0u0 ^Dv

v0 ^Dw
w0 þ 96Du

u0 ^Dt
t 0 ^Dv

v0 ^Dw
w0

(2)

where D...
... refers to the fully-connected cumulant and is regarded

as small in the cumulant approximation. The cumulant approxi-
mation has been extensively used in MR quantum chemistry.
It has been adopted in strongly contracted (SC) second-order
n-electron valence state perturbation (NEVPT2),40 FIC-MRCI,39,41

FIC-CAS second-order perturbation theory (FIC-CASPT2),42,43 etc.
While the cumulant approximation significantly reduces the
computational costs, it may disrupt the variational nature of
MRCI or introduce spurious intruder states into MRPT, due to
the presence of nonphysical interactions within the Hamiltonian
matrix.

It is worth noting that high-order RDMs can also be approxi-
mated using alternative techniques. For instance, one can use a
simplified approximate reference wave function to evaluate
RDMs with much reduced computational costs. On top of
the DMRG reference wave function, Guo et al.44 estimated the
4-RDM with a lower bond dimension than that employed in the
DMRG energy optimization. Similarly, in Roemelt et al.’s imple-
mentation of SC-NEVPT2 on top of the DMRG reference, both
the perturber functions and the unperturbed Hamiltonian are
projected onto a reduced Hilbert space.45 This space is defined
by the renormalized states in the middle of the DMRG lattice,
rather than the full variational matrix product state (MPS) space
in usual DMRG calculations. High-order RDMs can also be
efficiently computed using the resolution of identity (RI)46

approximation, which factorizes many-index matrices into a
sum of products involving only fewer-index matrices.

Dtuvw
t 0u0v0w0 ¼

X
I ;J

BIBJ Ih jÊtuvw

t 0u0v0w0 Jj i

¼
X

I ;J;K;L;M

BIBJ Ih jÊt

t 0 Kj i Kh jÊ
u

u0 Lj i Lh jÊ
v

v0 Mj i Mh jÊ
w

w0 Jj i:

(3)

Here, the zeroth-order wave function is taken as C0j i ¼P
I

BI Ij i and the set of Ij i Jj i; Kj i; Lj i; Mj ið Þ represents suitable

many-particle state functions. By applying pre-screening (PS) and
extended PS (EPS) approximations to the CASCI reference wave
function, the number of state functions within the RI space can
be significantly reduced.47 By factorizing the matrix elements of
the Dyall Hamiltonian in a similar manner, the computational
cost for all matrices involved in the FIC-NEVPT2 method can also
be reduced to that of evaluating only 3-RDMs.48,49

4 Restricting the summation items

Another way to characterize dynamic correlations beyond a large
active space is to completely avoid the use of high-order RDMs.
As discussed in Section 2, this necessitates the costly computation
of Hamiltonian elements, owing to the immense number of
summation terms over the vast array of excited CFGs. Instead of
employing the extensive CASCI expansion (easily exceeding one
billion terms) within a large CAS, a straightforward strategy to
reduce the number of excited CFGs is to utilize the compact sCI
wave function as the reference. This reference comprises only
a limited number (usually less than one hundred thousand)
of truncated, significant CFGs. Ma et al.50,51 have successfully
implemented spin-adapted MRCI on top of the sCI reference in
conjunction with EC approximation. This approach, termed as
sCI-EC-MRCI, has been effectively utilized for active spaces
encompassing over 40 active orbitals. The impact of overlooked
reference CFGs can be further taken into account through a static-
dynamic-static (SDS) framework proposed by Liu et al.52 This is
achieved by introducing not just the primary space (P), which is
composed of reference CFGs, and the external space (Q), com-
prised of excited CFGs, but also a secondary space (S) that consists
of the remaining CFGs within the CAS.

The concept of stochastic sampling can also be utilized to
decrease the number of summation terms when evaluating
matrix elements in MR approaches. Alavi et al.53 proposed a
stochastic evaluation of MR linearized coupled cluster (LCC)
theory. In this method, both the zeroth-order and first-order
wave functions are sampled stochastically by the full configu-
ration interaction quantum Monte Carlo (FCIQMC)12 method.
Recently, Booth et al.54 further utilized FCIQMC to develop a
stochastic FIC-NEVPT2 method. Sharma et al.55,56 also suggested
stochastic versions for both SC-MRCI and SC-NEVPT2 by employ-
ing variational Monte Carlo (VMC) to directly sample contribu-
tions from CFGs in the FOIS. One benefit of these stochastic
methods is their excellent parallel efficiency, which allows them
to be easily implemented on large-scale parallel computers, as
has been demonstrated in numerous QMC studies.

Another straightforward strategy for simplifying the com-
plexity in MR calculations involves focusing solely on single
excitations from the reference, while disregarding contribu-
tions from double and higher excitations. For example, in the
adiabatic connection (AC) method introduced by Pernal
et al.,57–61 the two-electron RDMs at the given coupling con-
stant a (ranging between 0 and 1) are approximately expressed
by one-electron reduced properties, namely, 1-RDM and one-
electron transition RDM (1-TRDM) in a non-perturbative way,
and the a-dependent 1-TRDMs are obtained by employing
Rowe’s equation of motion theory in the extended random
phase approximation (ERPA),62 which requires knowledge of
only the 1-RDM and 2-RDM at a = 0 (i.e., those RDMs derived
from CASSCF). However, the excitation operator is constrained
to only single excitations within the working ERPA framework.
This approach is found to be able to efficiently capture the
dynamic correlation beyond a large CAS, as it avoids the use of
high-order RDMs. But it is also noticed to be less accurate than
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other MR methods for strongly correlated systems and excited
states due to its neglect of doubly excited configurations.63

5. Using renormalized many-electron
states instead of primitive CFGs

While utilizing a subset of important CFGs as a reference or
employing stochastic sampling can markedly reduce the com-
putational demands associated with summation operations
during matrix element evaluations, the convergence patterns
concerning the chosen/sampled primitive CFGs are system
dependent. In the case of extremely highly correlated systems,
a vast array of CFGs possess nearly identical and non-negligible
weights, thereby rendering these techniques ineffective for
achieving converged outcomes. Therefore, for such systems,
the idea of DMRG could be followed, where renormalized
many-electron states are utilized instead of CFG bases to repre-
sent the entire Hilbert space. This approach could significantly
compress the Hilbert space while maintaining high accuracy.

Since the computational cost of quantum chemistry (QC)-
DMRG scales steeply (O(k4m2) + O(k3m3)) with system size (k,
the number of active orbitals) and necessitates a substantial
number (m B 103–4) of truncated renormalized bases, also
known as auxiliary bond dimensions, directly applying it to
the entire MO space is often prohibitive. Since the MPS in the
QC-DMRG is block-sparse when particle number symmetry is
considered, and each block’s indices are associated with well-
defined quantum numbers, the required bond dimension
could be reduced during the sweep process by discarding
blocks with specific quantum numbers. For example, by virtue
of restricting the particle numbers of the MPS within an
external space to not exceed two, the configurations corres-
ponding to processes involving more than double excitations
could be discarded (similar to limiting excitation patterns in
MR calculations), thus the bond dimension is reduced. This
approach was first implemented in the MPS-PT method,64,65

where the second-order energy is obtained by variationally
minimizing the Hylleraas functional in the space of MPS.
Consequently, the first-order wavefunction can be optimized by
a sweep algorithm, while overlaps and transition operator ele-
ments can be easily obtained through contractions between two
MPSs with one MPO. This method theoretically recovers exact
uncontracted MRPT energies in the limit of a reasonable MPS
bond dimension and can be applied to various MRPT theories
such as NEVPT2, retaining excitation degree-perturbation theory
(REPT2),66,67 and linearized multireference coupled-cluster
method (MRLCCM),68 with different choices of zeroth-order
Hamiltonian.

However, even if the bond dimension is reduced, one still
needs to construct the long-chain MPO in quantum chemistry
and perform multiple sweeps over a long chain of MO sites. For
systems with hundreds of external orbitals, the MPS-PT method
remains very expensive. Therefore, Larsson and others proposed
fusing the external space sites into large sites.69,70 These large
sites directly represent all possible electron configurations in the

external space, i.e., residues of configurations in the external
space. By constructing operator matrices with these configu-
ration residues as basis vectors in the external space, the long
orbital chain of the external orbitals in the standard MPS-PT
method is compressed into one large site. Thus, the final
number of sites is only the number of active orbitals plus one
or two (depending on whether core orbitals and external orbitals
are further fused together), avoiding the extensive sweep process
in the external space. In addition to the MPS-PT with big sites,
the MPS-MRCI, also known as the DMRG-RAS method, with big
sites has also been implemented.

Since many MPS blocks are discarded by restricting quan-
tum numbers, the MPS-PT/MRCI methods achieve a significant
speedup compared to the standard DMRG. However, due to the
appearance of ‘‘long-range interactions’’ caused by forcibly
mapping MOs onto a one-dimensional chain, the MPS-PT/
MRCI methods over the entire orbital space still require a much
larger bond dimension than that used in DMRG calculations
within the active space. Therefore, Ma et al.71 proposed a spin-
adapted MPS-MRCI method to reduce the large bond dimension
in the non-spin-adapted version and ensure spin-adapted
results. Building on this, they further proposed adopting a
divide-and-conquer approach, optimizing and obtaining the
renormalized many-electron states in the active space, called
renormalized residues (RRs), separately and then connecting
them with configuration residues in the external space to
describe the entire space. Since the entanglement within the
external space is weak, the external orbitals can be partitioned
and treated as the buffer environment space for parts of the
active space, obtaining renormalized residues for the active
space portion by portion. The resulted RR-MRCI method has
been proved that it can improve the computational efficiency of
the MPS-MRCI method while keeping the error controlled within
chemical accuracy.

Although the RRs account for the environment’s effect,
resulting in fewer RRs representing the Hilbert space than con-
tracted residues for the same accuracy, this also means that the
computational cost for a single RR is often higher than that for a
contracted residue, as the calculation needs to include the
environment’s degrees of freedom. Therefore, as a balance, con-
tracted residues can be used in the double excitation space, while
RRs are used in the single excitation space. This avoids the 4-RDM
problem caused by contracted residues in the single excitation
space and the excessive renormalization cost due to too many
environmental degrees of freedom in the double excitation space.
As a result, methods that mix RRs and contracted residues in
MPS-PT and MRCI have also been proposed.71,72

6 Using the effective Hamiltonian

Rather than assessing the dynamic correlation with the bare
many-electron Hamiltonian Ĥ, an alternative approach is to
employ effective Hamiltonian theories, which allows one to
encapsulate a vast array of degrees of freedom into a small part
of %H that is decoupled from the rest of the world via similarity
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transformations �H ¼ Ô�1ĤÔ
� �

. Therefore, the main focus in

the effective Hamiltonian theories is on Ĥ and its transformed
version %H and the wave function plays a much more minor role.

CC theory can be viewed as an effective Hamiltonian theory
when one reformulates the exponential term in the wave function
ansatz into the form of the transformed Hamiltonian. For exam-
ple, the unitary canonical transformation (CT) method, initially
proposed by White,73 and later advanced by Yanai and Chan
et al.,74–78 is an approximated internally contracted MR unitary CC
(ic-MRUCC) theory. However, this framework further incorporates
operator decomposition approximations to systematically elimi-
nate all three-body and higher-order interactions within the
Baker-Campbell–Hausdorff (BCH) expansion of the transformed
Hamiltonian, thereby simplifying the computational complexity.

Also using a formalism similar to that of unitary CC theory,
Li and Evangelista79,80 proposed a MR-driven similarity renorma-
lization group (DSRG) approach, which writes the unitary operator

Ô in terms of an exponential operator eÂ(s), where Â(s) is the s-
dependent anti-Hermitian operator in terms of standard cluster
operator T̂(s) as Â(s) = T̂(s) � T̂†(s). As s increases, the DSRG
transformation gradually reduces the magnitude of the non-
diagonal components of %H(s) to zero. For finite values of s, the
DSRG Hamiltonian possesses a band-diagonal structure in the
Fock space. Due to the simplicity of the transformed Hamiltonian
%H(s), the highest body rank of RDM cumulants appearing in the
expressions of the second-order perturbative approximation of
the MR-DSRG, denoted as DSRG-MRPT2, is only three, therefore
the expensive terms involving 4-RDMs are avoided. Recently,
Feldmann and Reiher81 further combined the MR-DSRG with
the FIC-MRCC and demonstrated that the unitary flow equation
approach can be adapted for non-unitary transformations, rationa-
lizing the renormalization of FIC-MRCC amplitudes. Meanwhile,
DSRG suffers from a notable drawback, i.e. its performance is
dependent on the choice of the flow parameter s.

In addition, the transcorrelated Hamiltonian, a non-Hermitian
effective Hamiltonian, typically used for accounting for the explicit
electron correlation in the electronic Hamiltonian, has also
been incorporated into FCIQMC and DMRG calculations.82–85

Transcorrelation86 is a technique in which a similarity transforma-
tion is applied to the many-electron Hamiltonian Ĥ in order to
absorb an exponential Jastrow correlation factor t̂: %H = e�t̂Ĥet̂. By
virtue of using the transcorrelated Hamiltonian, part of the
dynamic correlation induced by the electron–electron cusp can
be efficiently dealt with, and accordingly much faster energy
convergence with respect to the basis set size can be achieved.
However, the other remaining dynamic correlations still have to be
considered with other standard MR methods.

7 Hybridization between MC-WFT and
SR-WFT or density functional theory

A computationally cheap strategy to obtain dynamic correlations
beyond large active spaces is to combine MC-WFT methods
with SR-WFT ones or density functional theory (DFT), thereby

exploiting the high efficiency in treating dynamic correlation by
SR-WFT or DFT, while maintaining the success of describing
static correlation by MC-WFT.

One representative example along this direction is tailored
CC (TCC),87–90 which employs the following split-amplitude
wave function ansatz

cTCCj i ¼ eT̂ f0j i ¼ eT̂CASþT̂ext f0j i ¼ eT̂CASeT̂ext f0j i: (4)

Here the cluster operator T̂ comprises two parts: a CAS part
(T̂CAS) and an external part (T̂ext). Note that f0j i is a single
determinant reference, so T̂CAS and T̂ext commute naturally.
Therefore, T̂CAS can be seen as the static correlation with
respect to the HF single reference and its associated CC
amplitudes can be acquired by a SCI, QMC or DMRG procedure
and then kept frozen during the TCC calculation.91–97 As for the
T̂ext amplitudes, they are optimized by the following linked CC
equation analogous to that in the standard SRCC method:

fm

D �� e�T̂extðe�T̂CASĤeT̂CASÞeT̂ext f0j i ¼ 0; (5)

where fm

�� E
is the excited CFG that does not lie in the CAS.

Different from TCC, the externally corrected CC (ecCC)
method98–100 extracts static correlation from an approximate
CASCI solver and then uses this wave function as an ‘‘external’’
source of high-order CC amplitudes. For instance, in ecCC
singles and doubles (ecCCSD), the cluster operator T̂ is given by

T̂ = T̂1 + T̂2 + T̂ec
3 + T̂ec

4 , (6)

where T̂ec
3 and T̂ec

4 excite the HF single reference determinant into
the space of triples and quadruples determinants extracted from
the external source. The T̂1 and T̂2 amplitudes are obtained by
solving the ecCCSD equation using fixed T̂ec

3 and T̂ec
4 .

DFT is nowadays the most prevalent electronic structure
method in quantum chemistry. This popularity stems from its
optimal balance between computational accuracy and efficiency.
However, challenges persist in addressing its delocalization error
and static correlation error. The combination of MC-WFT
and DFT presents ambiguity due to the difficulty in separating
static and dynamic correlations strictly. A minor fraction of static
correlation is inherently incorporated into DFT computations
through empirical functional parameters. Consequently, without
implementing appropriate treatments, this can result in the
double-counting of correlation effects.

To address the issue of double-counting correlation effects,
Savin and Flad101 introduced the MC range-separated short-
range DFT (MC-srDFT) method. In this approach, the two-
electron operator is bifurcated into long-range (lr) and short-
range (sr) components. Consequently, the short-range segment
of electron interaction is managed by DFT, while the long-range
segment is allocated to MC-WFT. MC-srDFT necessitates
the development of new short-range exchange–correlation
functionals because the standard functionals, which were
engineered to encapsulate the entire electron correlation,
are ill-suited for this purpose. As a result, variants such as
short-range local density approximation (srLDA), short-range
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generalized gradient approximation (srGGA), and meta-srGGA
have been devised.

The symmetry dilemma, in addition to the double-counting
error, represents one of the most significant theoretical
challenges to the proper combination of MC-WFT and DFT.
Conventional DFT models’ treatment of open-shell systems
hinges on the employment of unphysical ra and rb densities,
derived from unrestricted (i.e., spin-polarized) Slater determi-
nants with incorrect spin symmetry. This is incompatible with
the preserved spin symmetry in MC-WFT, whose eigenfunc-
tions are Ŝ2 and Ŝz (where S represents the total electron spin).
A potential solution to this symmetry dilemma is multi-
configurational pair-density functional theory (MC-PDFT).102–108

In this framework, the functional is expressed in terms of the
total density r along with the on-top two-particle pair density P,
rather than being a function of the spin-up and spin-down
densities as in usual DFT. The on-top pair density is expressed
in terms of the 2-RDM as

PðrÞ ¼
P
pqrs

Dpq
rs c

�
pðrÞc�qðrÞcrðrÞcsðrÞ: (7)

8 Using time-dependent formulation

In MRPT, the initial zeroth-order wave function is not an eigen-
state of a one-electron Hamiltonian but rather of an interacting
Hamiltonian. This implies that functions of the zeroth-order
Hamiltonian, such as the resolvent operator in PT, are not
explicitly known in computational form. Nevertheless, executing
time-evolution with this identical Hamiltonian is comparatively
more manageable. Therefore, Sokolov and colleagues109,110 have
proposed a time-dependent formulation of MRPT, which builds on
the framework of time-dependent perturbation theory. This for-
mulation has been applied to time-dependent NEVPT2, yielding
the fully uncontracted NEVPT2 wave function and energy but with
a lower computational scaling than the usual contracted variants,
and also bypassing the construction of high-order RDMs. None-
theless, the efficiency and accuracy of wave function compression
during imaginary-time evolution warrant further investigation.

9 Benchmarking over the NdO
molecule

Rare-earth elements (REEs) are crucial components in numerous
high-technology products, advanced materials, and computing
devices. To evaluate the effectiveness of the aforementioned
methodologies, we examine the potential energy curve for the
ground state of the neodymium oxide (NdO) molecule employing
multiple available MR approaches. Previously, this molecule
was studied using several methods including single-reference
CCSD(T) based on the complex-valued wave function111 and the
second-order generalized Van Vleck perturbation theory
(GVVPT2) method with an active space comprising 10 orbitals
and 10 electrons.112 Although GVVPT2 provided a reasonable
estimate for the equilibrium bond length (1.780 Å), the calcu-
lated harmonic frequency (891 cm�1) exhibited significant dis-
crepancies from the experimental measurements. Consequently,
in this study, we employ a larger active space to compute this
molecule.

We performed DMRG-SCF (m = 1000) calculations using the
OpenMolcas software113 in combination with Block2114 to opti-
mize the orbitals. Subsequently, we generated the FCIDUMP file of
molecular orbital integrals using the DMRG-SCF natural orbitals
(with external orbitals canonicalized), which were then read into
the PySCF115 and Kylin4 software to compute additional results.
The methods employed include DMRG-FIC-CASPT2 (OpenMolcas +
Block2), DMRG-PDFT (OpenMolcas + QCMaquis116), DMRG-AC0
(PySCF + Block2), DMRG-uLDSRG(2) (Forte117 + Block2), DMRG-
FIC-NEVPT2 (Block2), DMRG-SC-NEVPT2 (Block2), MPS-NEVPT2
(Block2), MPS-MRREPT2 (Block2), MPS-MRCI (Block2/Kylin),
DMRG2sCI-EC-MRCI (Kylin), DMRG2sCI-ENPT2 (Kylin), and RR-
UC-MRCI (Kylin). The molecular point group of NdO was set to
C2v, and the ‘‘Linear’’ keyword was used during the DMRG-SCF
calculations to account for its supersymmetry. The basis set
used was ANO-RCC-VQZP, and second-order scalar relativistic
corrections were included via the Douglas–Kroll–Hess (DKH)
Hamiltonian.

We selected an active space of (18e, 20o) for NdO, encom-
passing the 5s, 5p, 5d, 4f, and 6s orbitals of Nd and the 2p

Fig. 2 Potential energy curve of the ground state (15P) of the NdO molecule. The energy values in the graph have been shifted by �9691 Hartree.
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orbital of O, with all occupied inactive orbitals frozen. The
calculated electronic state was the ground state of NdO: 15P.
The results are presented in Fig. 2. Note that DMRG-PDFT does
not approach the FCI limit within this basis set but rather aims
to approach the basis set limit. Therefore, its results are not
presented in the figure. The original data for these methods can
be found in the ESI.† The equilibrium bond length and spectro-
scopic parameters of NdO were fitted using a sixth-order
polynomial, with detailed values provided in Table 1.

The obtained results demonstrate that the DMRG-SCF method
is capable of qualitatively describing the dissociation behavior of
NdO with reasonable accuracy. However, it should be noted that a
systematic energy shift is observed when compared to other MR
calculations due to its neglect of dynamic correlation. Moreover,
the error in the estimated harmonic frequency for the DMRG-SCF
exceeds 5%, also highlighting the importance of dynamic correla-
tion. All other MR methods that incorporate dynamic correlation
beyond DMRG generally provide a close estimation of dynamic
correlation energy, around 0.4 Hartree. For the equilibrium bond
length, most MR methods yield excellent fitting results with
relative errors less than 1%, except for the DMRG2sCI-EC-MRCI/
ENPT2 methods. Regarding the harmonic frequency, most meth-
ods result in fitting errors larger than 2%, except for MPS-MRCI
and DMRG-AC0, as well as DMRG-PDFT when using FT:LSDA or
T:LSDA on-top pair density functionals. Notably, the performance
of PDFT is clearly sensitive to the choice of functional. Overall, the

DMRG-SC-NEVPT2, DMRG-uLDSRG(2), DMRG-AC0, MPS-MRCI,
and RR-UC-MRCI approaches yield results that are close to the
experimental values118 for this system. We hope that the insights
from this calculation can serve as a reference for other chemical
systems or as a benchmark for future novel MR methods.

10 Summary and outlook

The integration of innovative approaches for addressing
dynamic electron correlation with advanced approximate FCI-
solvers is increasingly being acknowledged as the standard
methodology for handling strongly correlated chemical mole-
cules and complexes. In this perspective, we reviewed the state-
of-the-art approaches for treating dynamic correlation beyond
large active spaces while avoiding the usage of expensive high-
order RDMs and classified them into seven types. These works
have demonstrated their ability to treat dynamic correlation,
with varying levels of accuracy and efficiency resulting from
their distinct theoretical frameworks. Recent numerical tests,
exemplified by the NdO molecules’ potential energy curve,
demonstrate that these methods can achieve promising accu-
racy in capturing both static and dynamic correlations.

Despite the many impressive schemes that have been
proposed and tested, their accessibility and ease of use remain
major challenges. To this day, the most commonly used MR

Table 1 Fitting results of equilibrium bond length, harmonic frequency and rotational constant for the ground state (15P) of the NdO molecule

Re/angstrom Error (%) oe/cm�1 Error (%) Be/cm�1 Error (%) Average errorh (%)

DMRG-SCFa 1.827 2.07 778.2 �6.24 0.351 �3.04 3.78
DMRG-PDFT (T:BLYP)b 1.832 2.35 744.8 �10.27 0.349 �3.59 5.41
DMRG-PDFT (FT:BLYP)b 1.828 2.12 748.08 �9.87 0.350 �3.31 5.10
DMRG2sCI-ENPT2ac 1.845 3.07 763.5 �8.01 0.344 �4.97 5.35
DMRG-PDFT (FT:revPBE)b 1.808 1.01 764.96 �7.84 0.358 �1.10 3.32
DMRG-PDFT (T:revPBE)b 1.809 1.06 765.85 �7.73 0.358 �1.10 3.30
DMRG2sCI-EC-MRCIac 1.814 1.34 781.1 �5.89 0.356 �1.66 2.96
DMRG-PDFT (T:PBE)b 1.804 0.78 770.99 �7.11 0.359 �0.83 2.91
DMRG-PDFT (FT:PBE)b 1.802 0.67 772.24 �6.96 0.360 �0.55 2.73
DMRG-PDFT (FT:OPBE)b 1.762 �1.56 809.47 �2.47 0.377 4.14 2.72
DMRG-PDFT (T:OPBE)b 1.760 �1.68 818.99 �1.33 0.378 4.42 2.48
DMRG-PDFT (FT:LSDA)b 1.769 �1.17 814.4 �1.88 0.374 3.31 2.12
DMRG-PDFT (T:LSDA)b 1.773 �0.95 808.6 �2.58 0.372 2.76 2.10
DMRG-FIC-NEVPT2b 1.787 �0.17 793.4 �4.41 0.366 1.10 1.89
MPS-MRREPT2d 1.797 0.39 786.8 �5.21 0.362 0.14 1.91
DMRG-FIC-CASPT2b 1.776 �0.78 813.2 �2.02 0.371 2.49 1.76
MPS-NEVPT2d 1.788 �0.12 799.7 �3.65 0.366 1.16 1.64
DMRG-SC-NEVPT2b 1.786 �0.22 809.2 �2.51 0.367 1.38 1.37
DMRG-uLDSRG(2)e 1.790 �0.03 804.7 �3.05 0.366 0.97 1.35
RR-UC-MRCIf 1.802 0.67 807.6 �2.70 0.360 �0.55 1.31
MPS-MRCId 1.789 �0.06 833.6 0.43 0.366 1.10 0.86
DMRG-AC0b 1.792 0.11 820.8 �1.11 0.365 0.83 0.68
Ref (GVVPT2)g 1.780 �0.56 891.0 7.30 0.359 �0.83 2.90
Experiment118 1.79 — 830 — 0.362 — —

a DMRG-CASSCF (m = 500) followed by a DMRG-complete active space configuration interaction (DMRG-CASCI) (m = 1000) calculation using
DMRG-CASSCF (m = 500) natural orbitals. b The DMRG (m = 1000) wave function of CAS(20o, 18e) is used as the reference wave function. c The

maximum discarded weight is set to be 5� 10�4, and as a result, the completeness of all calculations
P
i

ci
2

� �
is over 0.989. d The MPS with a large-

site strategy is utilized, and the m used for the MPS-MR calculation is 5000. e The parameter s in the DSRG is assigned a value of 0.5. f The external

space is evenly divided into 5 buffer spaces, and the total bond dimension
P
L

mL

� �
is 5 � 2000. g The GVVPT2 data were adopted from Sepehri’s

work,112 which involved the use of a smaller active space characterized by (10e, 10o). h The average error is calculated by averaging the absolute
values of the percentage errors in Re, oe, and Be.
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methods within the quantum chemistry community are still
CASPT2 and NEVPT2. Aside from the good balance between
accuracy and efficiency offered by these two methods, the fact
that many novel methods have not been integrated into popular
quantum chemistry programs is another reason for their limited
adoption. Therefore, user-friendly implementations in commonly-
used software packages remain a major task for this field.
Additionally, the use of MR methods is always associated with
the choice of active space.119,120 In some cases, the need for a large
active space arises from the inability to select a suitable medium-
sized active space or from changes in active space composition
along reaction pathways or potential energy surfaces.121 Thus, the
selection of active space is a significant challenge faced by all
methods aiming to treat dynamic correlation. Finally, due to the
high computational cost of these methods, progress related to
calculations of excited states, molecular spectra, and non-Born–
Oppenheimer effects remains limited. Therefore, combining
these methods with techniques such as the resolution of identity,
local correlation, explicit correlation, and high-performance com-
puting is becoming increasingly important.
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