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ntation of molecules and materials
in Bayesian optimization†

Mahyar Rajabi-Kochi, ‡a Negareh Mahboubi, ‡b Aseem Partap Singh Gill a

and Seyed Mohamad Moosavi *a

Bayesian optimization (BO) is increasingly used in molecular optimization and in guiding self-driving

laboratories for automated materials discovery. A crucial aspect of BO is how molecules and materials

are represented as feature vectors, where both the completeness and compactness of these

representations can influence the efficiency of the optimization process. Traditionally, a fixed

representation is chosen by expert chemists or applying data-driven feature selection methods on

available labeled datasets. However, when dealing with novel optimization tasks, prior knowledge or

large datasets are often unavailable, and relying on these even can introduce bias into the search

process. In this work, we demonstrate a Feature Adaptive Bayesian Optimization (FABO) framework,

which integrates feature selection in the Bayesian optimization process with Gaussian processes to

dynamically adapt material representations throughout the optimization cycles. We demonstrate the

effectiveness of this adaptive approach across several molecular optimization tasks, including the

discovery of high-performing metal–organic frameworks (MOFs) in three distinct tasks, each involving

unique property distributions and requiring a distinct representation. Our results show that the adaptive

nature of the representation leads to outperforming random search baseline and scenarios where prior

knowledge of the feature space is available. Notably, for known optimization tasks, FABO automatically

identifies representations that are aligned with human chemical intuition, validating its utility for

optimization tasks where such insights are not available in advance. Lastly, we show how a suboptimal

representation, e.g., when missing key features, can adversely impact BO performance, highlighting the

importance of starting from a full feature set and adapt it to different tasks. Our findings highlight FABO

as a robust approach for navigating large, complex materials search spaces in automated discovery

campaigns.
Introduction

Recent advancements in machine learning (ML) and articial
intelligence (AI) are transforming molecular and materials
discovery, driving the development of self-driving labs (SDLs)
that integrate ML with lab automation and robotics.1–4 SDLs
offer the potential to revolutionize research in chemistry and
materials discovery by automating experimental workows and
enabling autonomous experimental planning. At the heart of
SDL orchestration lies Bayesian optimization (BO), a framework
that enables autonomous decision-making by balancing the
exploration of new materials with the exploitation of existing
knowledge, guiding the search toward optimal materials.5–9
, University of Toronto, Toronto, Ontario
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tion (ESI) available. See DOI:

474
A BO campaign starts with dening the search space, which
involves converting materials and chemicals into numerical
representations. Signicant progress has been made in devel-
oping effective strategies to represent molecules for property
prediction tasks, leading to the development of high-
dimensional, complete representations with high learning
capacity.10–12 However, in addition to the quality of the repre-
sentation, the compactness is critical for BO performance.13–15

High-dimensional representation can lead to poor BO perfor-
mance due to the curse of dimensionality. Previous research
aimed to tackle this by tuning the surrogate model's receptive
eld through kernel length scale adjustments to facilitate high-
dimensional BO.16,17 Another alternative is to use generative
models to create embedding spaces for material representa-
tions.18 However, these methods oen struggle to reconstruct
materials when compressing information into lower-
dimensional representations for BO, especially in advanced
materials systems. As a result, current approaches tend to rely
on expert intuition or data-driven feature selection methods
based on labeled datasets. Yet, at the onset of materials
© 2025 The Author(s). Published by the Royal Society of Chemistry
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discovery, the search space is completely uncharted and no
labeled data are available. Generating labeled data to identify
optimal features or representations would require additional
experiments, using up precious resources on preliminary tests
instead of allocating them to explore more materials during the
Bayesian optimization process.

Metal–organic frameworks (MOFs) and related nanoporous
materials exemplify the challenge of material representation in
BO. MOFs are porous, crystalline materials with high tunable
chemistry.19 Over the past two decades, more than one hundred
thousand MOFs have been synthesized, and millions have been
predicted in silico.20–23 Identifying the most promising MOFs for
a given application is challenging using chemical intuition and
traditional experimental methods. In this context, Deshwal
et al.24 demonstrated the power of BO in identifying the best
nanoporous materials for high-pressure methane storage
applications, focusing on covalent organic frameworks (COFs).
In such applications, pore geometry governs adsorption prop-
erties at high gas pressures. However, in other cases, a balance
between pore geometry and materials chemistry, including the
choice of metal and linker, determines material perfor-
mance.25,26 Therefore, methods that can automatically adapt
MOF representations in a BO campaign are essential for accel-
erating MOF discovery for diverse applications.

In this work, we introduce the Feature Adaptive Bayesian
Optimization (FABO) framework, which systematically inte-
grates feature selection into BO. FABO dynamically identies
the most informative features inuencing material perfor-
mance at each optimization cycle, enabling efficient BO for
material discovery without prior representation knowledge. We
benchmark FABO across multiple optimization tasks that
require distinct representations, including: (1) MOF discovery
across three case studies: CO2 adsorption at high and low
pressures, and electronic band gap optimization; and (2)
organic molecule discovery for water solubility and inhibition
constant optimization. In all cases, FABO effectively reduces the
dimensionality of the feature space and enhances the efficiency
of BO, accelerating the identication of top-performing mate-
rials. Furthermore, by analyzing the automatically selected
features, we demonstrate that they align with features a human
expert might select for known tasks, showcasing FABO as
a robust method for materials representation in novel optimi-
zation tasks where prior knowledge or data is lacking.

Feature adaptive Bayesian optimization

The workow of Feature Adaptive Bayesian Optimization
(FABO) is summarized in Fig. 1. The goal is to efficiently identify
the best-performing materials from a large pool of candidates in
a material database while minimizing the number of expensive
experiments or simulations (i.e., data labeling). Each closed-
loop optimization cycle involves four key steps: data labeling,
updating materials representation, updating the surrogate
model, and selecting the next experiment to perform using an
acquisition function.

BO relies on two core components for decision-making:
a predictive surrogate model that estimates the objective
© 2025 The Author(s). Published by the Royal Society of Chemistry
function with uncertainty quantication, and an acquisition
function that guides the selection of the next material to
sample.27 The acquisition function balances exploitation
(choosing materials for which the model predicts optimal
values) with exploration (sampling areas of high uncertainty to
gather new information).28,29 In this study, we employ
a Gaussian Process Regressor (GPR) as the surrogate model due
to its strong uncertainty quantication capabilities, and two
acquisition functions, namely the Expected Improvement (EI)
and Upper Condence Bound (UCB), which are popular choices
in BO.30

The input to the surrogate model is a numerical represen-
tation of the materials. Since the decision-making in BO
depends on the previous evaluations but is invariant to their
order, we can treat each optimization step as an independent
BO cycle and adapt the material representation at each cycle.
Rather than relying on a xed, predened feature set or
requiring a large amount of labeled data upfront for feature
selection, we start with a complete, high-dimensional material
representation, and at each optimization cycle, we rene this
representation using feature selection methods to identify the
most relevant features. In this case, we only use the acquired
data during the BO campaign for the feature selection. This
enables autonomous exploration of the search space with
minimal prior information about the best representation.

We investigate two feature selection methods in this study;
however, any feature selection method can be incorporated into
the feature selection module of FABO. The rst method,
Maximum Relevancy Minimum Redundancy (mRMR), selects
features by balancing relevance to the target variable y and
redundancy with respect to the already selected features ({dj, dk,
.}). For a given candidate feature di, the mRMR score is
computed as:

mRMR scoreðdiÞ ¼ RelevanceðdijyÞ
Redundancy

�
di
���dj ; dk;.

�� (1)

Relevance measures how strongly the candidate feature di is
related to the target y. This is calculated using the F-statistic,
which quanties the statistical relationship between the
feature and the target. A higher relevance value indicates that
the feature has signicant explanatory power for y. Redundancy
represents the average correlation of the candidate feature di
with the already selected features ({dj, dk, .}). By minimizing
redundancy, the algorithm ensures that newly selected features
add unique and non-overlapping information. Initially, the rst
two features are selected purely based on their relevance to the
target. Subsequent the algorithm iteratively selects features by
maximizing the mRMR score for each candidate feature di,
continuing until the desired number of features is selected.31 To
implement this process, we use the mRMR Python package.32

The second method we utilize is Spearman ranking,
a univariate, ranking-based technique. It evaluates each feature
based on its Spearman rank correlation coefficient with the
target variable, measuring the strength and direction of the
monotonic relationship between the two. Both of these
Chem. Sci., 2025, 16, 5464–5474 | 5465
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Fig. 1 Feature Adaptive Bayesian Optimization (FABO) framework. FABO operates in an iterative feedback loop: (1) label the candidate material
(mn) computationally or experimentally (F(mn)) and add it to the labeled dataset, (2) perform feature selection based on labeled data to determine
the most informative representation, (3) update the surrogate model using the selected feature set (Dselected), and (4) apply the acquisition
function to select the next experiment (mn+1) for data labeling.
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methods are computationally efficient and easy to implement,
making them well-suited for iterative optimization processes
like BO.33,34 In our BO runs, we select between 5 and 40 features
for CO2 uptake, and between 5 and 20 for band gap optimiza-
tion, from the feature pool using these selection methods.
Detailed information about the feature selection methods and
the full workow can be found in the ESI.†
Case studies

We focus our case studies in this section on the discovery of
MOFs with specic target properties from large databases. More
benchmarking on molecular properties, such as molecular
solubility, can be found in ESI materials.† MOFs are an ideal
test case for the FABO framework due to the complex relation-
ship between geometry and chemistry that heavily inuences
their properties. This complexity makes identifying optimal
representations for Bayesian optimization especially chal-
lenging. In this study, we utilize two key datasets: (1) the QMOF
database including 8437 materials with the electronic band
gaps of MOFs calculated using high-throughput periodic
density functional theory (DFT),35,36 and (2) the gas adsorption
properties for Computational Ready MOF database (CoRE-
2019)37 with 9525 materials, for which we took CO2 adsorption
data at low (0.15 bar) and high pressures (16 bar) at room
temperature from a previous study.26 Given our prior knowledge
of how both chemistry and geometry affect these properties
from previous works,25,26,35 it provides the opportunity to
compare the representations adapted by FABO to those
following our chemical intuition. Specically, the band gap is
5466 | Chem. Sci., 2025, 16, 5464–5474
largely inuenced by the material's chemistry,35 gas uptake at
high pressure is primarily determined by geometry, and gas
uptake at low pressure is inuenced by a combination of both
chemistry and geometry.26

We begin with a complete representation of each MOF,
where the pool of features includes both chemical and pore
geometric characteristics. To represent chemistry of the mate-
rials, we use Revised Autocorrelation Calculations (RACs)26,38,39

alongside two stoichiometric feature sets. RACs capture the
chemical nature of MOFs by relating heuristic atomic proper-
ties, such as electronegativity and nuclear charge, across atoms
in a graph representation of the material. As RACs are
computed over the crystal graph of the material, they contain
bond geometric information in addition to pure chemical
features. This set of descriptors is augmented by heuristics like
ionization energy, electron affinity, and atomic group and row
numbers. In addition, we include two stoichiometric feature
sets: stoichiometric-45, developed by He et al., which includes
45 elemental property descriptors,40 and Stoichiometric-120,
which contains 103 elemental fraction descriptors and 17
statistical attributes.41 Both are based entirely on the chemical
composition of the materials. Moreover, for features describing
the pore geometry, we use eight descriptors, including the
largest included sphere (Di), largest free sphere (Df), the largest
included sphere along the free path (Dif), crystal density (r), as
well as volumetric and gravimetric surface areas and pore
volumes, calculated using Zeo++.42 Previous studies have
demonstrated that combining these chemical and geometric
features is sufficient to train machine learning models capable
of predicting both band gap and gas uptake at low and high
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Overview of the case studies in this study this includes material representation, the datasets, and performance evaluation.
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pressures, making this feature set a robust starting represen-
tation for our case studies.26,35

While this high-dimensional feature vector is expressive for
property regression tasks, using such a high-dimensional
representation in BO can signicantly reduce efficiency.
Therefore, selecting a smaller, more informative set of features
is necessary. We explore different scenarios for feature selection
and compare their performance to FABO's automatic, adaptive
feature selection process. The rst scenario involves feature
selection guided by expert intuition, where chemists choose
features deemed most relevant to the optimization task. The
second scenario assumes the existence of a fully labeled dataset
for the property of interest, allowing for traditional feature
selection before the BO process begins. While this approach can
yield highly effective representations, it is oen impractical in
early-stage materials discovery, where only a limited number of
experimental measurements are available. In another scenario,
labeled data for a related property is used as a proxy for feature
selection, and the selected features are transferred to a similar,
though not identical, optimization task (e.g., using partial
charge data to optimize band gap). In contrast to FABO, all of
these methods rely on xed feature sets that do not change
throughout the BO campaign. Once feature selection is per-
formed, the feature set remains static, even as new data is
acquired. FABO, however, dynamically updates the feature
representation as new labeled data becomes available, contin-
uously rening the search process.

Finally, we compare the performance of these methods to
three baselines: (1) random feature selection for BO, and (2)
random material selection, where materials are chosen at
random without the guidance of BO, and (3) DIONYSUS,17 a BO
framework which uses the full feature set and adjust the kernel
length scale for each feature throughout the BO process. A
summary of feature selection methods, the performance eval-
uation, and datasets are shown in Fig. 2.

In our benchmarking, the BO cycles, including the cycle of
planning (i.e., selecting the next point) and inference (updating
the model with new observations) is repeated for up to 250
iterations, assuming a budget of 250 experiments/computations
to nd the best material. As the initial data points can lead to
uncertainty in Bayesian optimization campaigns, we run 20
independent BO campaigns, each with 10 different initial data
points randomly selected from the original pool. This approach
© 2025 The Author(s). Published by the Royal Society of Chemistry
mitigates the risk of relying on a single, potentially unrepre-
sentative starting set. If BO campaigns are conducted with only
one set of initial data points, the optimization process becomes
overly dependent on that particular set, leading to biased results
and potentially missing the true optimal solution.43

Performance evaluation of FABO

We use three metrics to evaluate the quality of the acquired
MOFs during the BO campaign: the best rank, the best value of
the objective function, and the number of acquired materials
among the top 100 materials in the dataset.44 The search effi-
ciency curves in Fig. 3 demonstrate the high performance of
FABO across all three metrics and three objectives. FABO
consistently outperforms the baselines, and shows performance
similar to the cases where we have prior knowledge via expert
intuition or labeled dataset. The superior performance of FABO
compared to random search clearly highlights the power of BO
in materials optimization and discovery, surpassing traditional
trial-and-error approaches. Additionally, FABO's out-
performance of random feature selection underscores the crit-
ical role of selecting appropriate representations for different
BO tasks.

Remarkably, FABO performs similarly or better than BO
campaigns that use xed features obtained from feature selec-
tion methods applied to labeled datasets. Feature selection
methods typically rely on labeled datasets to identify features
that have the strongest relationship with the target property.
However, in the early stages of material discovery, labeled
datasets are unavailable. In a hypothetical scenario, let us
assume a labeled dataset exists. In this case, we apply two
machine learning-based feature selection methods—Spearman
ranking and mRMR—to select the top 5 and 40 features. We
then run BO campaigns using these xed, pre-selected features
to evaluate performance. This serves as a benchmarking model,
simulating the availability of a fully labeled dataset.

However, FABO excels by overcoming the limitations of such
static approaches. On one hand, it does not require any pre-
labeled data; it starts from scratch, dynamically acquiring
labeled data by prioritizing materials likely to have distin-
guished properties (exploitation aspect of BO) while simulta-
neously adapting the features to the labeled materials acquired
so far during the optimization process. On the other hand, it
demonstrates similar or better performance compared to BO
Chem. Sci., 2025, 16, 5464–5474 | 5467
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Fig. 3 Search efficiency curves for different representation methods. Results represent the average values across 20 trials for eachmethod, with
three performance metrics: the best rank, the best value, and the number of acquired materials among the top 100 materials in the dataset. (a)
CO2 uptake at low pressure, (b) CO2 uptake at high pressure, and (c) band gap.
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campaigns that use xed features. For instance, in the low-
pressure CO2 uptake task, BO using a xed feature set ob-
tained through Spearman ranking—applied to over 9500
MOFs—fails to capture even 10% of the top 100MOFs (Fig. S2 in
ESI†). In contrast, adapting the feature set with BO throughout
the optimization process results in identifying over 20% of the
top 100 MOFs (Fig. 3a). In the high-pressure CO2 uptake and
band gap optimization tasks, all BO campaigns, whether or not
they have access to label-annotated data, successfully identify
the optimal solution, though some converge more quickly than
others (Fig. S2 in ESI†). The key distinction, however, lies in the
5468 | Chem. Sci., 2025, 16, 5464–5474
fact that FABO follows a more practical approach. It successfully
identies the highest-ranking MOF by the 135th iteration,
nonetheless, relies solely on the available knowledge of the
search space and operates without any prerequisite information
(Fig. 3b). This makes FABO better suited for real-world
scenarios where labeled data is oen scarce or unavailable at
the outset.

While incorporating expert knowledge in BO (i.e., intuition-
based feature selection) offers more strategic guidance than
random feature selection, the results in Fig. 3 show intuition-
based feature selection oen falls short in fully capturing the
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc00200a


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

9/
07

/2
02

5 
5:

03
:1

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
complexity of structure–property relationship. In specic, for
the more complex properties, namely CO2 uptake at low pres-
sure and band gap, which involve complex chemistry, intuition
could not identify the best features for the tasks. For these two
tasks, the performance of BO using intuition-based represen-
tation is as poor as random selection. On the other hand, for the
simpler problem of high-pressure CO2 uptake, which requires
only geometric features, mainly pore volume, the intuition
based feature selection successfully identies the best MOFs
(Fig. 3b). These outcomes suggest that while intuition-based
methods may be advantageous in specic scenarios, they fail
to fully leverage the dataset's richness and complexity, limiting
their effectiveness across different tasks and even can introduce
bias to the search.

Transfer feature selection can be an effective way for feature
selection. This approach leverages knowledge from similar
optimization tasks, making it particularly useful when data
from a related domain is available or inexpensive to obtain. In
our case study on optimizing band gap, we utilize features that
are most informative for predicting the partial charge of MOFs,
as both properties are inuenced by the material's electronic
structure. By engineering features based on labeled partial
charge data and applying them to represent MOFs for band gap
optimization, we achieve signicantly better performance
compared to random search and random feature selection.
However, the fact that FABO outperforms transfer feature
selection highlights its effectiveness in scenarios where no prior
information is available, underscoring its robustness for
discovery tasks with limited or no existing data.

Previous research has suggested that BO using a Gaussian
process (GP) as the surrogate model struggles with efficiency in
high-dimensional spaces due to the curse of dimensionality,
specically when a single kernel length is used for all dimen-
sions. A remedy for this is to tune the length scale for each feature
such that the features with large length scales become less
important, akin to “feature deselection”, whereas features with
smaller length-scales are treated as highly relevant for predic-
tions. DIONYSUS17 is a GP model that follows this, in which it
employs a squared exponential (RBF) kernel with automatic
relevance determination (ARD), allowing each feature to have its
own length-scale parameter. These length-scales are optimized
during training via gradient-based methods. Fig. 3 shows that
while DIONYSUS can be effective and shows similar performance
to FABO in some scenarios, namely CO2 uptake at low pressure, it
struggles in cases where uninformative features dominate the
input space, as seen in our experiments with CO2 uptake at high
pressure and band gap optimization. The key difference lies in
how each method handles irrelevant features. FABO explicitly
eliminates these features by assigning them a zero weight,
whereas DIONYSUS retains them with very large length scales,
which can still introduce noise into the model. For CO2 uptake at
high pressure, where only a few features are informative, FABO's
ability to completely exclude irrelevant features enhances opti-
mization robustness.

Random forests are well-known for their ability to perform
automatic feature selection by assigning importance scores to
features, making them a potentially valuable surrogate model in
© 2025 The Author(s). Published by the Royal Society of Chemistry
Bayesian optimization. To evaluate their performance, we
implement BO campaigns using a random forest surrogate
model instead of GP. In this setup, the mean prediction is ob-
tained by averaging outputs from individual trees, and the
uncertainty is estimated from the variance of these predictions.
The results, as shown in Fig. S4,† indicate that while BO with
random forests can be effective in CO2 uptake at low pressure, it
struggles with tasks like CO2 uptake at high pressure and band
gap optimization and fails to converge to the material with
optimal properties within 250 iterations. The challenges stem
from the limitations of random forests in accurately quantifying
uncertainty, particularly outside the coverage of the training set.
Unlike GPs, which provide smooth and continuous predictive
surfaces with well-calibrated uncertainty estimates, random
forests rely on ensemble variance, which can be noisy and
unreliable for guiding exploration.

In sequential design strategies, the starting point of the
searching process plays a crucial role, as it can signicantly
inuence the primary knowledge of surrogate model and can
result in getting stuck in local minima. To assess the impact of
initial points on BO performance and the resulting uncertainty
in identifying the highest-ranked materials, we plot the best
rank aer 250 cycles across various methods (Fig. 4). Notably,
FABO identies the best materials in 250, 135 and 170 number
of iterations for CO2 low pressure, high pressure and band gap,
respectively. Integrating adaptive feature selection with BO
minimizes the uncertainty associated with the campaign start-
ing points, making the algorithm become independent of the
initial condition, and more stable and reliable.

Finally, we note that the choice of feature selection method
can inuence FABO's effectiveness. In particular, the mRMR
method performs better than Spearman correlation-based
approaches. This improvement is largely due to the mRMR's
ability to eliminate redundant features, leading to a more
compact and informative representation, which Spearman
correlation does not effectively address. Moreover, while FABO
effectively guides the optimization process, tuning hyper-
parameters across various components of the model remains
essential, particularly in complex tasks where nding the best
candidate can be challenging. For example, in the band gap
minimization, ne-tuning the acquisition function demon-
strates a signicant impact on performance. By switching from
expected improvement to upper condence bound for the rst
100 iterations, FABO enhances exploration and reduces model
uncertainty, focusing on active learning. Aer the initial
exploration phase, reverting to EI enables the model to better
exploit the learned patterns, ultimately leading to improved
performance. This hybrid acquisition strategy allows FABO to
converge to the top-ranked MOF in the band gap minimization
task aer 170 iterations, signicantly enhancing the optimiza-
tion outcome (Fig. S3 in ESI†).
Understanding the adapted representation

Monitoring the features selected by FABO provides valuable
insights into whether its choices align with expert's chemical
intuition. The feature pool used in this study consists of two
Chem. Sci., 2025, 16, 5464–5474 | 5469
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Fig. 4 Uncertainty analysis for the three optimization tasks. The error bars illustrate the standard deviation of the rankings of the best-acquired
MOFs across 20 trials, calculated after 250 iterations for each method. This iteration represents the assumed experimental budget, enabling
a meaningful comparison of the models' performance under the same constraints. (a) CO2 uptake at low pressure, (b) CO2 uptake at high
pressure, and (c) band gap. FABO is compared against baseline models and fixed-feature Bayesian optimization approaches.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

9/
07

/2
02

5 
5:

03
:1

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
main sets: geometric and chemical features, each capturing
distinct aspects of MOF structure. Chemical descriptors domi-
nate the pool, making up the majority of features, while
geometric features account for only about 2.5% of the total
(Fig. 5a). From previous works, we know that adsorption is
driven by geometric features at high pressure, due to the
physical connement and the available pore volume within the
MOF structures. In contrast, at low pressures, subtle chemical
interactions between the adsorbate and the MOF makes
chemical features critical for accurately predicting
performance.26

Fig. 5c shows that the representation adapted by FABO for
each task follows these chemical understandings. For high-
pressure CO2 uptake, geometric features dominate the repre-
sentation, which reects their importance in predicting
adsorption properties at high pressures. Conversely, for low-
pressure CO2 uptake, chemical features consistently constitute
the majority of features. Notably, while chemical features
remain predominant in low-pressure conditions, FABO
5470 | Chem. Sci., 2025, 16, 5464–5474
effectively adapts to capture the growing importance of
geometric features as the optimization progresses, adjusting its
representation to enhance the search process.

We observe a signicant difference in the number of selected
features between the low- and high-pressure cases. In the low-
pressure case, a larger number of features are selected, indi-
cating that a broader range of descriptors becomes relevant as
the model explores the search space (Fig. 5b). This suggests that
optimizing for low-pressure CO2 uptake requires capturing
a wider variety of characteristics, reecting the complexity of the
property. In contrast, the high-pressure case sees a decreasing
number of selected features, implying that a more specic and
rened set of descriptors is sufficient to predict the target
property accurately. This divergence underscores the different
nature of the two tasks: for low-pressure adsorption, the feature
set is more complex, whereas for high-pressure adsorption, the
model converges to a simpler, low-dimensional feature set. Over
time, however, as more labeled data become available through
FABO, the feature sets for both tasks stabilize and reach
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Understanding adapted representation throughout the BO cycles. (a) Distribution of geometric and chemical features within the dataset's
feature pool. (b) Feature set size during FABO optimization for identifying MOFs with the highest CO2 uptake at both low and high pressures. (c)
Number of chemical and geometric features utilized by FABO to represent MOFs at high and low pressure.
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a plateau, indicating that further data do not alter the selected
feature set. Interestingly, FABO does not start with a large
feature set at the beginning of the BO process due to the limited
amount of available data. This follows the bias-variance trade-
off, giving FABO a distinct advantage over xed representa-
tions, even those selected from labeled datasets. FABO selects
the most appropriate features based on the current dataset,
dynamically adjusting as new data is acquired. Moreover, this
reduction in the number of features for the high-pressure task
also explains why intuition-based feature selection may work
better in simpler cases. Since this problem is lower dimen-
sional, a human expert can more easily conceptualize the key
features, making manual feature selection more effective.
Inuence of suboptimal representation on BO

It is interesting to investigate how BO performs when starting
with a suboptimal representation—a feature set that fails to
capture the material characteristics most relevant to the prop-
erty of interest. Such a scenario can arise when a human
manually selects features based on incomplete knowledge or
assumptions, inadvertently excluding essential descriptors, and
© 2025 The Author(s). Published by the Royal Society of Chemistry
biasing the search. To mimic this situation, we designed
experiments where Bayesian optimization was tested with two
deliberately restricted feature pools: one consisting solely of
geometric descriptors and the other containing only chemical
descriptors.

Fig. 6 clearly demonstrates that when the BO model is con-
strained by limited feature information, its ability to identify the
optimal MOF is signicantly impacted. For example, in the low-
pressure CO2 adsorption task, running BO on a suboptimal
feature set with only a specic type of features results in the
selection of a MOF with a CO2 uptake of 7.25 mol kg−1, which is
more than 28% lower than the maximum CO2 uptake achieved
by a MOF in the full dataset. The lack of balanced feature
representation limits the model's capacity to capture the
underlying complexity of MOF behavior in this context. In
contrast, FABO, which has access to the full feature pool con-
taining both chemical and geometric features, outperforms
models that rely on suboptimal feature sets demonstrating the
importance of both types of descriptors in the optimization
process, as each contributes unique and essential information
(Fig. 6a). The trade-off between chemical and geometric
Chem. Sci., 2025, 16, 5464–5474 | 5471
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Fig. 6 Impact of suboptimal representation on BO. Each plot compares the best rank achieved (left) and the highest actual CO2 uptake obtained
(right) when FABO uses only geometric features, only chemical features, and when dynamically selecting features from both categories, for (a)
low-pressure CO2 uptake and (b) high-pressure CO2 uptake.
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descriptors becomes clear when one set is omitted, leading to
suboptimal search outcomes. Interestingly, in the high-
pressure CO2 uptake task, a model using only geometric
features performs signicantly better, identifying the top-
ranked MOF 50 iterations earlier than a model relying solely
on chemical features. However, FABO still matches the perfor-
mance of geometric-only model, highlighting its capacity to
detect when certain feature classes (in this case, chemical
features) are less critical. This adaptability prevents this
approach from overloading the optimization process with
irrelevant descriptors, streamlining the search while maintain-
ing high performance.
Conclusion

In this work, we introduced the Feature Adaptive Bayesian Opti-
mization (FABO) framework, which integrates feature selection
into Bayesian optimization to dynamically rene material repre-
sentations throughout the optimization process. Our approach
addresses a key challenge in materials discovery: identifying
effective representations for complex materials, such as MOFs, in
the absence of labeled data or prior knowledge. FABO offers
a more exible and efficient solution compared to traditional
methods that rely on static, xed feature sets.
5472 | Chem. Sci., 2025, 16, 5464–5474
Through a series of case studies, including low- and high-
pressure CO2 uptake and band gap optimization, we demon-
strated that FABO consistently outperforms or matches feature
selection approaches based on labeled data. Its ability to adapt
feature sets during the optimization allows it to capture the
evolving importance of different descriptors—such as
geometric features in high-pressure tasks and chemical features
in low-pressure tasks—overcoming the limitations of xed
representations. This adaptability enhances the search process
and positions FABO as a superior tool for real-world discovery
scenarios, particularly where annotated data is scarce or
unavailable at the outset.

Finally, our open-source implementation of FABO is avail-
able for researchers to easily apply to their own domain-specic
optimization problems. By starting from a complete feature set,
FABO's integrated feature selection within BO ensures that the
most relevant features are dynamically chosen to optimize the
search space efficiently.
Data availability

The code base for FABO as well as the codes and data to
reproduce results of this study are available from https://
github.com/AI4ChemS/FABO.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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