Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Two two-dimensional (2D) microporous metal–organic frameworks, [Zn2(TMTA)(DMF)2]·NO3·2H2O·3DMF (1, DMF = N,N-dimethylformamide) and [Zn3(TETA)2(DMF)4]·3DMF (2), were synthesized via a solvothermal reaction, where H3TMTA and H3TETA are 4,4′,4′′-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoic acid and 4,4′,4′′-(2,4,6-triethylbenzene-1,3,5-triyl)tribenzoic acid, respectively. Crystallographic studies, including powder and single crystal X-ray diffraction (XRD) analyses, reveal that compound 1 features a 2D microporous framework composed of paddle-wheel Zn2(RCOO)3 clusters and TMTA3− ligands, while the 2D double-layered structure 2 is assembled by discrete trinuclear Zn3(RCOO)6 clusters and TETA3− ligands. Both activated frameworks of 1 and 2 show permanent porosities with Brunauer–Emmett–Teller (BET) surface areas of 788 and 421 m2 g−1, respectively. Desolvated 1 exhibits a considerable carbon dioxide adsorption of 94.2 cm3 g−1 at 1 bar and 273 K, which is higher than that of 42.0 cm3 g−1 for 2. Furthermore, both materials show selective carbon dioxide adsorption over methane and nitrogen at ambient temperature.

Graphical abstract: Two-dimensional metal–organic frameworks for selective separation of CO2/CH4 and CO2/N2

Page: ^ Top