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Developing novel hydrocarbon-based proton exchange membranes is at the Frontier of research on fuel

cells, batteries and electrolysis, aiming to reach the demand for advanced performance in proton

conductivity, fuel retardation, swelling, mechanical and thermal stability etc. Sulfonated copolymers are

a class of highly focused materials used to fabricate proton exchange membranes. Sampling the space

of chemical structure and architecture, as well as the composition of sulfonated copolymers, generated

more than 2800 original reports (till June 2018), which highlight the feasibility and necessity to screen

novel materials with computer-aided design strategies. Through an investigation of the 166 hydrophilic

and 175 hydrophobic monomers that were used to build hydrocarbon-based sulfonated copolymers,

correlation relationships among performance indexes and intrinsic properties of copolymers were

explored. Reliable predictive models, in both regression and classification manners, for proton

conductivity, methanol permeability, tensile modulus and degradation temperature were constructed

and validated. Based on the top ranked monomers with superior performance and their optimal fractions

and combinations, novel copolymers that have better predicted performance at a 0.05 significance level

were presented. These predicted formulas provide directions for the synthesis of novel hydrocarbon-

based sulfonated copolymers for advanced proton exchange membranes.
Introduction

Fuel cells are one of the most potent clean energy techniques
owing to their attractive high energy conversion efficiency and
zero emission. Polymer electrolyte fuel cells (PEFCs) are at the
Frontier of research, and the key components, proton exchange
membranes (PEMs) and the associated catalyst layers, are the
bottleneck for their large-scale applications at the current stage.
Themembranes shouldmeet strict requirements, mainly scaled
by ve classes of performance indexes: (i) high proton
conductivity, (ii) low fuel permeability, (iii) good thermal and
hydrolytic stability, (iv) outstanding mechanical properties in
both dry and hydrated states, and (v) sufficient water uptake and
moderate swelling.1 Various polymer materials have been
explored, abundant data have been accumulated and the
necessity to provide data supported knowledge and wisdom for
further advancement of PEMs has become apparent.
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For commercial usage, the state-of-the-art PEMmaterials are
peruorinated sulfonic acid (PFSA) polymers, such as Naon®,2

Flemion®3 etc. They readily satisfy the ve performance indexes,
but also suffer from a limited operation temperature window
(0–80 �C), high cost and high methanol permeability. Alterna-
tive candidates, mainly hydrocarbon-based sulfonated copoly-
mers, including acid-functionalized aromatic hydrocarbon-
based polymers,4 poly(arylene ether nitrile),5 poly(phenylene
ether ketone),6 poly(ether sulfone),7,8 poly(arylene ether),9 pol-
y(ether ketone),10 poly(arylene ether ketone),11–14 polyimides,15–17

polyphenylene oxide18 etc., have been reported with high
expectations. These novel polymers were extensively explored in
a trial-and-error manner to some degree. According to a recent
comprehensive review,4 hydrocarbon-based sulfonated copoly-
mers designed to be competitive with PFSA polymers should
maintain ne microphase separated structures to achieve
a sufficiently high proton conductivity. The assembled struc-
tures of copolymers have a continuous matrix made from
hydrophobic monomers, and percolated ionic channels stabi-
lized by hydrophilic monomers in a relative humidity window to
allow proton conduction. The candidates for both hydrophobic
and hydrophilic monomers span a broad space of chemical
structure and architecture, and the compositions for a given
combination of monomers also create a huge number of
formulas. Inspired by the widely distributed block copolymers
and their phase-separated structures,19–22 it is feasible and
J. Mater. Chem. A, 2019, 7, 11847–11857 | 11847
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highly demanded to design novel polymers that can be used to
fabricate advanced PEMs using computer-aided rational design
strategies and material genome approaches.

There have been more than 2800 academic reports (till June
2018) published on the exploration of various hydrocarbon-
based sulfonated copolymers. For a given copolymer, consid-
ering the complexity to compute a given performance index
such as proton conduction, mechanical modulus, thermal
stability, fuel permeability etc., either in a spatial or temporal
scale, conventional theoretical and simulation approaches
become inadequate. The highly tuneable nature of copolymers
for PEMs requires a multi-scale consideration of composition,
the assembly of atoms, groups, molecular segments, and
molecules, and their changes under various processing and
operation conditions. Current discovery of novel copolymers is
largely guided by chemical intuition and serendipity, which
makes providing solid knowledge on the boundary and optimal
solutions difficult. QSPR (Quantitative Structure–Property
Relationship)-based approaches have gradually established
success in tackling such problems in the development of
purpose-driven materials through rational design.23–27 Takaha-
shi et al.28 used Random Forest (RF) classication to pick 11 out
of 15 000 perovskite materials with a predicted ideal band gap
that would facilitate the preparation of superior solar cells.
Giorgos et al.29 employed a machine learning method for large-
scale screening of metal–organic frameworks (MOFs) for gas
storage. We recently constructed30 implicit and explicit predic-
tive models for the proton conductivities of Naon®-based
PEMs using RF and multiple linear regression (MLR), and the
most potent llers and processing treatments were found.
However, using data-driven rational design approaches to
explore hydrocarbon-based sulfonated copolymers for PEMs, to
the best of our knowledge, has not been reported yet.

We performed data mining based on reports closely related
to the exploration of hydrocarbon-based sulfonated copolymers
to fabricate PEMs. Through the introduction of a unied Lsig
value, data and feature engineering, predictive model evalua-
tion and optimal solution identication with a unied setting
parameter can be readily regulated. Then, predictive models for
performance indexes including proton conductivity (s), the
degradation temperature at 5% weight loss (Td5), methanol
permeability (MePerm) and tensile modulus (TM) were con-
structed and their robustness was validated. Further, the
hydrophobic and hydrophilic monomers used to build copoly-
mers were clustered and the optimal compositions were
screened out. Potent formulas for the copolymers with better
overall performance at a signicant level were presented. This
work provides realizable strategies to guide the synthesis of
hydrocarbon-based sulfonated copolymers in the fabrication of
advanced PEMs.

Methods
Datasets

More than 2800 original reports were retrieved from the Web of
Science with the keywords of “sulfonate proton exchange
membrane & copolymer” and “sulfonate polymer electrolyte
11848 | J. Mater. Chem. A, 2019, 7, 11847–11857
membrane & copolymer” till June 2018. In total, 156 of them
were kept aer excluding those reports either with insufficient
and incomplete information as PEM materials, or with other
various purposes where the correlation between the intrinsic
features of the copolymers and the performance indexes of
PEMs was not in focus. 3518 records were accumulated, with all
or some of the nine performance indexes, i.e. s, MePerm, water
uptake (WU), swelling ratio (SR), glass transition temperature
(Tg), Td5, tensile yielding strength (TS), TM and the elongation at
break (EAB). The probability density functions (PDFs) for four of
these indexes are presented in Fig. S1,† and the values at the
preferred side with Lsig are labelled. There are, in total, 198
copolymers (166 hydrophilic monomers with at least one
sulfonate acid group, and 175 hydrophobic monomers, the full
list of these monomers can be found in Tables S1 and S2 in the
ESI†) in a broad window of temperatures (in �C) and relative
humidity (in %). Then, the chemical structure and architecture
of each monomer were encoded as SMILES. The number of
records and the corresponding simple statistical values are
presented in Table S3.†

Features

Descriptive features for the composition, structure, processing
and operational conditions from the reports were accumulated
and organized using the protocol introduced in our recent
works.30,31 Four features were tabulated from the original
reports; they are the fraction of hydrophilic monomer in the
copolymer (FraLic), ion exchange capacity (IEC, meq. g�1),
temperature (T, �C), and relative humidity (RH, %). Features for
the chemical structure and architecture of the hydrophobic and
hydrophilic monomers were computed using RDKit.32 They
include 1D constitutional molecular properties (such as the
count of atoms, groups and bonds), 2D topological descriptors
(such as the Balaban’ J index), the 2D connectivity index (e.g. Chi
indices) and 2D MOE-type descriptors33 (such as VSA, EState
descriptors). In total, 196 features for each copolymer from the
weighted (by FraLic) addition of hydrophilic and hydrophobic
monomers were calculated.

Engineering of the large number of features to remove
redundancy and information-insufficient noise is necessary to
construct robust predictive models. The variance of a feature
across the whole dataset is dened as

VARðxÞ2 ¼
PN
i¼1

ðxi � \x. Þ2

N
(1)

Here, N is the number of records for a feature x, and <x> is the
mean value. A feature was excluded if VAR was no more than
Lsig. Then, the pairwise correlation coefficients of two features
and performance indexes were calculated according to

CORRðx; yÞp ¼
N
PN
i¼1

xiyi �
PN
i¼1

xi

PN
i¼1

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN
i¼1

xi
2 �

�PN
i¼1

xi

�2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
PN
i¼1

yi2 �
�PN

i¼1

yi

�2
s

(2)
This journal is © The Royal Society of Chemistry 2019
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CORRðx; yÞsp ¼
cov
�
rgx � rgy

�
VARrgxVARrgy

(3)

If the CORR between any two features was larger than 1 �
Lsig, then the feature with less VAR was excluded to remove
redundancy. The subscripts p and sp represent Pearson and
Spearman correlations, respectively. VARrgx and VARrgy are the
standard deviations of the rank variables, and cov(rgx � rgy) is
the covariance of the rank variables. In this work, Lsig is xed at
0.05.

For the dataset used in this work, 88 and 57 features were
excluded due to noise (VAR# Lsig) and redundancy (CORR > 1�
Lsig), and nally, 51 features remained. Further engineering to
construct robust predictive models with as few features as
possible was also performed using the random forest (RF)
algorithm34 following our recent reported strategies,30 and
strengthened using the genetic algorithm (GA).35 The informa-
tion of the names, abbreviations, groups of molecules and
nomenclature for the 55 features is presented in Table S4 in the
ESI.†

It is worth noting that using the same procedure, the
correlation matrix for performance indexes expressed by Pear-
son (CORRp) and Spearman (CORRsp) was also calculated.
Alternative to CORRsp, the maximal information coefficient
(MIC)36 was also computed to present the correlation in pairs of
performance indexes.
Predictive models and evaluation

Before the construction of predictive models, the combination
of the remaining 55 features was optimized by GA enhanced
regression RF analysis. For a given dataset and a combination of
features, the root mean square error (RMSE) between the pre-
dicted and experimental performance indexes was computed.
Then, the importance of each feature in predicting a given
performance index can be determined by the CORRp, %IncMSE
and CORRsp in linear, nonlinear and monotonous correlation
relationships. Here, we used 2000 decision trees in each RF
computation. The optimal combination of features with the
least RMSE and the highest stability against data permutation
was selected to construct the nal predictive models.

To evaluate the performance of the regression predictive
models, the root mean squared error (RMSE) and coefficient of
determination, e.g., the square of Rp, were calculated through

Rp
2 ¼ 1�

XN
i¼1

�
yi � y0i

�2
XN
i¼1

ðyi � \y. Þ2
(4)

Here, y0i is the predicted value for the ith record. Rp
2 is in the

range of 0 and 1, where a larger value means a better
prediction.

We also built classication models with the logistic regres-
sion (LR) algorithm37 to classify copolymers. To evaluate the
performance of the classication predictive models, threshold
This journal is © The Royal Society of Chemistry 2019
values to split binary classes were set as (1 � Lsig) � <y> (as
listed in Table S3†). Either plus or minus was used depending
on the preference of whether a performance index is at the
larger or smaller side. The area under the receiver operating
characteristic (ROC) curve (AUC) was used to evaluate the
goodness-of-t for the predictive models. The ROC curve
represents a graphical representation of the discriminatory
power of a binary classication system and it is created by
plotting the true positive rate (TPR) against the false positive
rate (FPR). AUC values range from 0 to 1, where 1 represents
a perfect model and less than 0.5 indicates an ideally random
model.

In the evaluation of the robustness of the predictive models,
5-fold cross-validation was carried out using home-made scripts
implanted in R-project.
Monomer clustering and copolymer screening

A sequence of elementary units in SMILES was used to record
the chemical structure and architecture of each monomer.
Then, the matrix for monomer clustering was encoded by
Morgan ngerprints,38 which composed a series of binary digits
(bits) for the presence or absence of particular substructures in
a monomer. An aligned region in a pair of sequences was used
to determine the similarity between two monomers.

The distribution of the chemical structures and architectures
of the 166 hydrophilic and 175 hydrophobic monomers was
presented using a hierarchical clustering dendrogram. The
optimal number of clusters at each hierarchical level was
determined using the Elbowmethod, whichminimizes the total
intra-cluster variation or the total within-cluster sum of the
square39 through

min

 Xk
i¼1

W ðCkÞ
!

(5)

where Ck is the kth cluster and W(Ck) is the within-cluster
variation.

Based on the clustering of monomers and their contribution
to each performance index, the screening of copolymer
compositions was carried out. The fractions of hydrophilic
monomers were set from 0.1 to 0.9 with a 0.1 step to get 9
grades. This generates a screening library consisting of 262 450
copolymers, and only 198 of them have been reported. Combi-
nations of hydrophilic and hydrophobic monomers that have
predicted performance values with Lsig at least at the preferred
side of the distribution of performance for the 198 reported
copolymers were selected for further analysis.
Results and discussion
Predictive models

Prior to the construction of the predictive models, a correlation
matrix containing the performance indexes using CORRsp and
MIC was computed and is presented in Fig. 1. The key perfor-
mance indexes for PEMs, s and MePerm, are positively corre-
lated; as selective membranes, they are expected to interact in
a trade-off manner.40 This is reasonable for sulfonated PEMs,
J. Mater. Chem. A, 2019, 7, 11847–11857 | 11849
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Fig. 1 Correlation matrix of PEM performance indexes. The lower and upper triangles are MIC and CORRp, respectively. The grey numbers are
sample capacities for the pairs of performance indexes. The color bar and the size of the circles indicate the strength and direction of correlation
from �1 to 1.
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where protonated water clusters (such as in Zundel and Eigen
forms) and methanol have comparable steric volume and
polarity, and both of them transport across the membrane
through the interconnected ionic domains.41 WU, SR and s are
all positively correlated in linear and nonlinear forms;31 they are
crucial indexes for proton conduction and dimensional
stability. Regarding the thermal properties, the MIC between Tg
and Td5 is 1, while the CORRp is relatively low. This indicates
that they have strong nonlinear correlation. Meanwhile, all
mechanical properties are strongly correlated. To construct
representative predictive models, analogous to the procedure
for feature engineering, we selected 4 out of 9 performance
indexes, s, MePerm, Td5 and TM. Their probability distributions
can be found in Fig. S1.†

The optimization of the combination of features to construct
predictive models for the four performance indexes is shown in
Fig. S2.† The RMSE for both training and test sets in the 5-fold
cross validation levels off aer �300 generations of permuta-
tion in the GA enhanced RF algorithm. Finally, the optimized
combination of 20, 29, 18 and 27 features was selected to predict
11850 | J. Mater. Chem. A, 2019, 7, 11847–11857
s, Td5, MePerm and TM, separately. These features are bolded
and labeled in Table S4,† and the correlation matrix for these
selected features is shown in Fig. S3.† It clearly shows that
through the feature engineering using Lsig criteria, nally
selected features are representative and informative. Further
evaluation of the importance of features through the mean
decrease in node impurity computed in RF, i.e., %IncMSE,
together with CORRp and CORRsp for the correlation of indi-
vidual features with performance indexes, is illustrated in
Fig. S4.† These three coefficients only show partial consistence,
which indicates that the predictive models for the four perfor-
mance indexes cannot be constructed straightforwardly
through simple combination of these features. According to the
order of %IncMSE, the top ranked features reasonably correlate
with the performance indexes. For example, proton concentra-
tion in the membranes, which is tightly coupled with Ion
Exchange Capacity (IEC), is the most important feature for
proton conduction.6 It is well known that proton conductivity is
commonly positively associated with methanol permeability,42

thus IEC is also the most importance feature for MePerm. For
This journal is © The Royal Society of Chemistry 2019
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Td5, the polarity of exposed Van der Waals surface area
(PEOE_VSA) is a well-known determinative factor for the
thermal stability of polymers.

Predictive models for these four performance indexes in
a regression and classication manner were constructed and
are shown in Fig. 2. For all four performance indexes, from the
test set in the 5-fold cross validation, the correlation between
Fig. 2 Performance of predictive models using the test dataset for (a, a0) p
loss (Td5), (c, c0) methanol permeability (MePerm) and (d, d0) tensile mo
logistic regression.

This journal is © The Royal Society of Chemistry 2019
predicted and experimental values using Rp
2 was found to be in

the range of 0.79 to 0.91, and the AUC is in the range of 0.78 to
0.91. Such a high condence score indicates that these predic-
tive models are quite reliable and can be used to screen
hydrocarbon-based copolymers from the huge number of
copolymer candidates in combination and the fraction of
hydrophilic and hydrophobic monomers.
roton conductivity (s), (b, b0) the degradation temperature at 5%weight
dulus (TM) in regression using random forest and classification using

J. Mater. Chem. A, 2019, 7, 11847–11857 | 11851
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Clustering of monomers

Through the minimization of the total intra-cluster variation,
the determination of the optimal number of clusters at the
elbow point, all 166 hydrophilic monomers and 175 hydro-
phobic monomers can be clustered into 4 and 3 clusters,
respectively (shown in Fig. 3). In the 4 clusters of hydrophilic
monomers, there are 95, 29, 33 and 9monomers in each cluster.
The signicance level among the distributions of chemical
space spanned by the monomers in each cluster was also
computed using the t-test. All except the pair of cli2 and cli4
Fig. 3 Determination of the optimal number of clusters at the elbow poi
d), and the histogram ofmonomer similarity in each cluster (e, f) for 166 hy
in (e and f) indicate the significant difference for the ribbon connection

11852 | J. Mater. Chem. A, 2019, 7, 11847–11857
show signicant difference in chemical space at Lsig. Similarly,
there are 94, 12 and 69 monomers in the 3 hydrophobic clus-
ters. Only the pair of clo1 and clo2 slightly overlapped in
chemical space. These results indicate that the clustering based
on SMILES sequences provides reasonable discrimination for
both hydrophilic and hydrophobic monomers.

We further investigated the correlation between chemical
space and performance indexes. The distribution of perfor-
mance indexes associated with the chemical space represented
by the clusters of monomers using a violin plot is shown in
nt (a, b), the distribution of monomers in the dendrogram of clusters (c,
drophilic (a, c, e) and 175 hydrophobic (b, d, f) monomers. The p-values
between two clusters using the t-test.

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 PDF plots of RF model predictions at different fractions of hydrophilic monomer ratio: (a) proton conductivity (s), (b) the degradation
temperature at 5% weight loss (Td5), (c) methanol permeability (MePerm) and (d) tensile modulus (TM). Vertical dashed lines show the best value
from all reports with Lsig that refers to the distribution of reported copolymers.
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Fig. S5.† ANOVA analysis shows that all except one have
signicantly different distributions in performance indexes.
This suggests that the location of copolymers in the chemical
space can strongly affect these four performance indexes. The
exception is for hydrophobic clusters andMePerm that is due to
the majority of hydrophobic monomers having been designed
to retard methanol permeability. For the hydrophilic mono-
mers, cli1 shows the largest median TM value, cli2 has the
highest proton conductivity, and cli3 shows the highest median
Td5. The hydrophilic monomers in cli4 have a higher portion
with a high s, TM, and low MePerm at the preferred side, but
with a very low Td5 that may inhibit the simple utilization of
these monomers. For the hydrophobic clusters, the monomers
in clo2 show a bimodal distribution in s, but Td5 is not high
enough, which also prohibits their usage. Hydrophobic mono-
mers play the major role as a supporting matrix, and the large
number of monomers in clo1 that exhibited well balanced
performances should encourage the development of
hydrocarbon-based copolymers for PEMs. This cluster analysis
provides clear evidence for how structural modication inu-
ences performance indexes. It again validates the feasibility of
This journal is © The Royal Society of Chemistry 2019
the rational design of copolymers for targeted performance
indexes.
Screening copolymers

Based on the predictive models and clustered structure–
performance relationships, we carried out a combinatorial and
high-throughput screening for potential copolymers with
improved performances to fabricate PEMs. All 166 hydrophilic
and 175 hydrophobic monomers, in 9 grades for the fraction of
hydrophilic monomers, were used to generate the screening
material library. This library consists of 261 252 novel copoly-
mers aer excluding the 198 reported ones. The prediction by
the regression RF model and classication LR models for the
four performance indexes was employed to screen the copol-
ymer library at a xed temperature and relative humidity of
80 �C and 100%, where most PEMs were measured and showed
the best performance for s. The color–map plot for the pre-
dicted values by RF and LR is shown in Fig. S6 and S7,† and the
distributions of these predicted values are presented using PDF
in Fig. 4. We can see that an increase of the fraction of hydro-
philic monomers leads to higher s and MePerm values, but it is
J. Mater. Chem. A, 2019, 7, 11847–11857 | 11853
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Fig. 5 Top 5 ranked copolymers with the combination of hydrophilic and hydrophobicmonomers, and the fraction of hydrophilic monomers for
each performance index of (a) proton conductivity (s), (b) the degradation temperature at 5% weight loss (Td5), (c) methanol permeability
(MePerm) and (d) tensile modulus (TM).
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deleterious to Td5 and TM. The evolution of PDF against FraLic
shows different overall distributions, which suggests that the
explored chemical space is quite limited. Otherwise, the overall
PDF prole should be similar to a normal distribution.

In reference to the distribution of 198 reported copolymers at
Lsig (values shown in Table S3†), 319, 32, 156 and 48 novel
copolymers show superior performance in s, Td5, MePerm and
TM, respectively. We then sorted these copolymers by using
a single performance index, and the top 5 ranked copolymers are
presented in Fig. 5. The s of the top 5 ranked copolymers is in the
range of 24.82–24.32 S m�1, which is better than the value of 17.5
S m�1 for Naon 117.43 The s values of these copolymers are also
comparable to that of sulfonated poly(arylene-co-naphthalimide)
based membranes, which were reported by Zhang et al.,44 where
a maximum of 30.2 S m�1 was achieved at 100 �C. But, as ex-
pected, a higher content of sulfonate facilitates both proton
conduction and methanol permeability; these top ranked copol-
ymers have their fraction of hydrophilic monomers ranging from
0.8 to 0.9, which may not be practicable. Accordingly, the top
ranked copolymers with low MePerm occur in copolymers with
a low FraLic. Meanwhile, a low FraLic is also favored for copoly-
mers with superior performance in Td5 and TM. This is reasonable
11854 | J. Mater. Chem. A, 2019, 7, 11847–11857
in the design of copolymers for PEMs, where the hydrophobic part
is mainly in charge of the thermal and mechanic stability.

In the majority of reports, alternative polymers were devel-
oped for usage in PEMs and compared with the “golden stan-
dard” material, namely Naon. We collected peak values of
Naon 117 for the four performance indexes, s: 17.5 S m�1,43

Td5: 266.2 �C,45 MePerm: 11.5 � 10�7 cm2 s�1 (ref. 46) and TM:
0.3 GPa.47 Then, all copolymers in the library that have overall
better predicted performance could be found. There are, in total,
2838 novel copolymers. These polymers are composed by 59 (out
of 166) hydrophilic and 154 (out of 175) hydrophobicmonomers.
The FraLic locates at 0.79 � 0.14 in the range from 0.2 to 0.9.
Maximization of the selectivity (dened as s/MePerm at 100%
RH and 80 �C)may provide the best candidates for PEMs. Table 1
shows that the top ranked copolymers with unique hydrophilic
monomers fall into the ideal range for PEM applications. The
full list of the 2838 candidate copolymers with the predicted s,
Td5, TM andMePerm can be found in the ESI.† It is worth noting
that these copolymers shown in Table 1 are not included in the
198 reported copolymers, and only the copolymer with the best
selectivity associated with a unique hydrophilic monomer was
presented. The s of the top copolymers ranged from 17.6 to 21.2
This journal is © The Royal Society of Chemistry 2019

https://doi.org/10.1039/c9ta00688e


Table 1 Top ranked copolymers with best predicted values and overall proton conductivity (s), the degradation temperature at 5% weight loss
(Td5), methanol permeability (MePerm) and tensile modulus (TM) performance better than Nafion 117. The table is sorted by selectivity (s/
MePerm) in decreasing order. The R group in eachmonomer denotes the position of polymerization. Refi and Refo represent the original reports
for the hydrophilic and hydrophobic monomers used in the fabrication of PEMs

Hydrophilic Hydrophobic FraLic
s

(S m�1) Td5 (�C)
MePerm (10�7

cm2 s�1) TM (GPa)
Selectivity (105

S s cm�3) Re Refo

Naon 117 — 17.5 266.2 11.5 0.3 —

1 0.7 18.2 331.8 2.7 1.3 6.5 48 49

2 0.6 19.1 304.2 3.2 1.2 5.9 50 51

3 0.4 17.9 322.7 3.1 1.2 5.7 52 49

4 0.6 17.6 300.7 3.3 1.2 5.2 51 10

5 0.8 20.9 269.9 4.0 1.1 5.1 53 49

6 0.6 20.1 297.8 3.9 1.1 5.1 43 54

7 0.6 19.3 328.4 3.8 1.3 5.1 55 56

8 0.4 21.2 296.9 4.1 1.1 5.0 57 58

9 0.4 18.2 278.8 3.6 1.5 4.9 5 59

10 0.4 19.1 326.5 3.9 1.1 4.8 49 49
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S m�1, the thermal and mechanical performances are all supe-
rior to those of Naon 117, and the MePerm of these copolymers
is only around one quarter of that of Naon 117. The top
hydrophilic monomer was reported by Dong et al.48 and a series
of sulfonated methoxyphenyl-containing poly(arylene ether
ketone) based membranes was fabricated; the s in the original
report was in the range of 7.1–29.4 S m�1. The corresponding
hydrophobic monomer was reported by Shin et al.,49 and the s of
the membranes spanned the range of 14.4–25.3 S m�1. For the
MePerm and TM, all have preferable values as compared with
those of Naon 117. This indicates that novel hydrocarbon-
based sulfonated copolymers with overall performance better
This journal is © The Royal Society of Chemistry 2019
than the “golden standard” do exist. Better candidate materials
found through introducing densely clustered ion-conducting
groups (e.g., multiple sulfonic groups on aromatic rings etc.) or
ketone functional groups are worth exploring to solve the
bottleneck problem in proton exchange membranes.
Conclusions

In this work, through the introduction of the Lsig, we can
regulate feature engineering, predictive model evaluation and
optimal formula identication with a unied setting parameter.
Reliable and robust predictive models for the four critical
J. Mater. Chem. A, 2019, 7, 11847–11857 | 11855

https://doi.org/10.1039/c9ta00688e


Journal of Materials Chemistry A Paper

Pu
bl

is
he

d 
on

 1
1 

A
pr

il 
20

19
. D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 7
/2

3/
20

25
 1

0:
35

:3
7 

A
M

. 
View Article Online
performance indexes of proton exchange membranes made
from hydrocarbon-based sulfonated copolymers, in both
regression and classication manners, were constructed. These
predictive models were applied to exhaustively screen the
combination of hydrophobic and hydrophilic monomers, and
this provided 319, 32, 156, and 48 novel copolymers that
potentially have superior single performance at the 0.05
signicance level in reference to the distribution of the 198 re-
ported copolymers in proton conductivity, methanol perme-
ability, tensile modulus and degradation temperature,
respectively. We also found 2838 novel copolymers that have
better overall performance than Naon 117 for fully hydrated
membranes at 80 �C. This work provides a way to learn from
past knowledge, and rationally design novel materials with the
aid of machine learning. Further experimental validations for
these predicted formulas should greatly promote our under-
standing of the materials used to fabricate advanced proton
exchange membranes.

There are also some defects of the predicted copolymer
candidates used for proton exchange membranes found in this
work. This is also a general problem for many machine
learning, rational design and material genome approaches,
where system-dependant factors may dominate the increase or
decrease of a performance index. For example, the feasibility of
synthesis, desulfonation in hydrophilic monomers, acid–base
interactions etc. may exclude some top-ranked copolymer
candidates screened out in this work. On the other hand, for
materials used in proton exchange membranes, they may be
operated under harsh conditions, such as dehydrated and low
temperature conditions. In this situation, Naon still outper-
forms most reported hydrocarbon-based sulfonated copolymers
nowadays. Meanwhile, one of the other important performance
indexes, the long-term reliability considering the operation
stability of materials during hydration–dehydration cycles and
heating–cooling cycles measured in membranes or in
a membrane electrode assembly, was not predicted, due to the
limited available data. Further enclosing of the long-term reli-
ability may further reduce the candidates that have overall
performance better than Naon 117. These problems, as shown
from the narrowing-down of candidates by picking out 59 out of
166 hydrophilic and 154 out of 175 hydrophobic monomers
whose overall best performance was better than Naon, can be
solved based on this study. Overall, we are expecting experts to
practically validate these candidate copolymers selected
through machine learning based rational design.
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