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Rapid prediction of environmental chemistry properties is critical

for the green and sustainable development of the chemical indus-

try and drug discovery. Machine learning methods can be applied

to learn the relations between chemical structures and their

environmental impact. Graph machine learning, by learning the

representations directly from molecular graphs, may have better

predictive power than conventional feature-based models. In this

work, we leveraged graph neural networks to predict the environ-

mental chemistry properties of molecules. To systematically evalu-

ate the model performance, we selected a representative list of

datasets, ranging from solubility to reactivity, and compared them

directly to commonly used methods. We found that the graph

model achieved near state-of-the-art accuracy for all tasks and, for

several, improved the accuracy by a large margin over conventional

models that rely on human-designed chemical features. This

demonstrates that graph machine learning can be a powerful tool

to perform representation learning for environmental chemistry.

Further, we compared the data efficiency of conventional feature-

based models and graph neural networks, providing guidance for

model selection dependent on the size of datasets and feature

requirements.

A recent focus of the chemical industry is the reduction of its
environmental footprint.1 Proposed routes to this goal include
the adoption of green chemistry frameworks that minimize the
impact of chemical synthesis and manufacturing at scale and
altering process designs to use chemicals with minimal
carbon intensity and toxicological risk.2 Successful application
of such a framework requires rapid and accurate assessment of
the environmentally relevant properties of prospective chemi-
cal components—a task to which machine learning (ML) tech-
niques are particularly well-suited.3–8

Machine learning algorithms have proved to be a useful
augmentation to traditional data analytics techniques in the
evaluation of the environmental impacts of chemical pro-
cesses. For example, Zhang and Zhang employed a deep-
neural-network regression for the prediction of the aqueous
solubilities of persistent, bioaccumulative, and toxic chemi-
cals.9 Dawson et al. approximated the intrinsic metabolic
clearance rate and plasma bound fraction of toxic chemicals
using random forest regression for their application in toxico-
kinetic modeling.10 Zhong et al. trained an ensemble
regression model for prediction of the reactivity of organic con-
taminants toward a variety of oxidants.11 Other successful
applications include the identification of endocrine-disrupting
chemicals12 and direct modeling of environmental impacts
from chemical production.13 These and other use cases
demonstrate the broad applicability of machine learning tech-
niques to problems in environmental engineering.14

Common across the existing literature is the use of chemi-
cal features to produce a flattened, vector representation of the
complex geometry of an organic molecule. We denote ML
models that take this approach as “feature-based” models, as
they rely on explicit featurization of the molecular structure to
construct an input representation. Chemical features have a
long history of use in cheminformatics applications and may
be broadly classified into two families: molecular descriptors
and fingerprints.15 Molecular descriptors may be understood
to abstract molecular structural information into summary
statistics, such as molecular weight, polarizability, or numbers
of heteroatoms. They have the advantage of being relatively
intuitively understood; however, they fail to fully capture the
information contained in the molecular structure, and the
selection of appropriate molecular descriptors for a given pre-
diction task is often nontrivial. Common examples of descrip-
tor-based features include PaDEL descriptors,16 Mordred
descriptors,17 and MACCS descriptors.18 The second class of
chemical features, molecular fingerprints, explicitly encodes
the presence and local environment of functional groups into
a feature vector. An example is extended-connectivity finger-
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prints (ECFP).19 The use of molecular fingerprints provides a
more direct representation of the molecular structure and sim-
plifies feature selection at the cost of some interpretability
relative to molecular features.

With recent advances in graph machine learning, direct
graph representation of molecular structures, where nodes rep-
resent atoms and edges represent chemical bonds, has
become a viable alternative to chemical descriptors.15

Following this approach, Duvenaud et al. created data-driven
features, NeuralFPs, by applying convolution operations
directly to molecular graphs and showed the resulting repre-
sentation to be better performing than ECFP features.20

Subsequent work has solidified these results, with graph
neural networks achieving state-of-the-art accuracy for a variety
of molecular machine learning tasks.21,22 Recently, the ring-
enhanced graph neural network (O-GNN23) has been reported
as an advancement on existing graph-machine-learning
methods, by explicitly encoding information on rings into
graph neural networks. It shows state-of-the-art accuracy on
molecular property prediction benchmarks.

In this work, we systematically evaluated the predictive
power of graph machine learning methods and compared
them with feature-based models that rely on chemical features.
A list of molecular property prediction tasks were selected in
the environmental chemistry domain. The results from four
sets of models are reported: ECFP-based models, NeuralFP-
based graph models, NeuralFP feature-based models built on
other types of chemical features, and one of the state-of-the-art
graph models, O-GNN. We found that the state-of-the-art
graph machine learning models outperformed or were at least
on par with the feature-based methods in all tasks. To support
these results, we conducted a data-efficiency analysis to
provide guidance on when graph models are advantaged over
feature-based approaches and examined the correlation of
residual errors across both methods. We found the graph
machine learning architecture an exemplary tool for molecular
property prediction tasks on datasets exceeding 1000 obser-
vations and competitive with conventional feature-based
models down to several hundred observations. The state-of-
the-art graph machine learning methods provide a rapid and
accurate approach for environmental chemistry property
prediction.

We identified a series of molecular property prediction
tasks with associated datasets reported in the recent literature,
ranging from solubility to metabolic susceptibility to reactivity,
on which to assess the performance of O-GNN relative to the
literature-reported model. We provide an overview of the
selected datasets, baseline accuracy and our new results in
Table 1 of the Results section. In the first task, ESOL, the
model was asked to predict the aqueous solubility of a series
of small molecules. The ESOL dataset is composed of 1144
structures paired with experimentally measured aqueous solu-
bilities reported in logarithm-transformed units of mol L−1.24

In the reporting publication,24 the ESOL dataset was fitted
using molecular descriptors and linear regression, which
identified a high dependence of aqueous solubilities on both

the calculated octanol–water partition coefficient log Poctanol
and the proportion of heavy atoms in aromatic systems.
Recently, Zhang and Zhang demonstrated improved accuracy
on this task using molecular descriptors, PaDEL features, with
a deep neural network (PaDEL-DNN), and we included their
achieved RMSEtest of 0.62 as the baseline in Table 1.9 The
second task, BCF, was required to predict a bioconcentration
factor for the accumulation of a series of small molecules in
fish. The BCF dataset covers 1056 molecules, and includes
both molecular structures and bioconcentration factors
reported as the logarithm-transformed ratio between the con-
centration in the organism and that in the containing water at
steady state.25 Zhang and Zhang also applied the PaDEL-DNN
method to this task, achieving a RMSEtest of 0.67. In the third
task, Clint, the model was developed to predict the rate of
intrinsic metabolic clearance (Clint) of a series of small mole-
cules, an important parameter for toxicokinetic modeling.10

Dawson et al. assembled experimental measurements of Clint
by hepatic cells and microsome assays from the ChEMBL and
ToxCast databases, which were standardized into the unit μL
min−1 per 106 cells. While they utilized this dataset to train a
classifier, we framed a regression problem for consistency with
the remainder of the tasks and trained a random forest model
with Mordred descriptors, in order to predict the logarithm-
transformed Clint to serve as the baseline model in Table 1.17

The last two tasks, O3-react and SO4-react, asked the model to
predict the reactivity of organic contaminants to two oxidants,
O3 (ozone), and SO4

•−.11 To construct the associated datasets,
Zhong et al. collected reactivity data from the literature, curat-
ing a total of 759 and 557 data points in O3-react and SO4-
react, respectively.11 The logarithm-transformed reaction rate
constants log(k) were reported alongside the reaction con-
ditions.11 ECFP fingerprints and molecular descriptors were

Table 1 Selected datasets for environmental chemistrya

Task Property Size
Baseline
accuracya Baseline model

ESOL Small molecule
solubility in water

1144 0.62 (0.04) PaDEL-DNN

BCF Bioconcentration
factor

1056 0.67 (0.04) PaDEL-DNN

Clint Intrinsic metabolic
clearance rate

4422 0.86 (0.05) Descriptor-based
features + random
forest regressionb

O3-
react

Chemical reactivity
with O3 oxidants

759 2.06 Fingerprint-based
features + ridge-
regression

SO4-
react

Chemical reactivity
with SO4

•− oxidants
557 0.64 Descriptor-based

features + random
forest regression

a Baseline accuracy is reported in root-mean-square-error of the testing
dataset (RMSEtest), where the numbers outside and inside the parenth-
eses are the mean and standard deviation values obtained from cross-
validation. The splits in O3-react and SO4-react are given in the litera-
ture,11 so no cross-validation is conducted. The units of ESOL and
Clint are ln(mol L−1) and ln(μL min−1 per 106 cells), while others are
non-dimensional properties. b This baseline result is created by this
work.
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benchmarked in combination with multiple machine learning
algorithms, with the best performing models ultimately
obtaining an RMSEtest of 2.06 on the O3-react task and an
RMSEtest of 0.64 on the SO4-react task.

We briefly introduce the graph neural networks leveraged
in this work, the NeuralFP-based graph model, NeuralFP, and
O-GNN. NeuralFP generalizes ECFP features by applying convo-
lution operations directly on graphs, while O-GNN further
adds the explicit encoding of ring structures, along with fea-
tures of bonds and rings in the graph convolution steps. A
more in-depth theoretical analysis of graph machine learning
approach may be found in the literature.20,23 We summarize
the architectures of NeuralFP and O-GNN in Fig. 1.
Mathematically, for graph machine learning methods, we
define the molecular graph G as G = (V,E,R), where V, E and R
are the atom, bond and ring set, respectively. The atom, bond,
and ring features are specified by hV (atom type, chirality,
degree number, etc.), hE (bond type, stereochemistry, conju-
gated type) and hR (a concatenation of atom and bond features
that are involved in the rings). For NeuralFP, only G = (V,E) and
atom features hV are utilized in the iterative message passing
(graph convolution) step, where the involved features are
updated by message-passing layers that merge information
from the neighborhood of a central node. After pooling the
message-passed node features, we obtain a graph-level mole-
cular feature. The molecular properties are then obtained by
transformation with a feed-forward neural network on the
graph-level features. Unlike NeuralFP, O-GNN further encodes
the edge and ring features (R,hE,hR) inside the neural network.
For studies on the graph-based models, the NeuralFP model
was implemented in DeepChem,26 and O-GNN was
implemented in PyTorch as previously reported.23 Detailed
implementations of each model have been made available to
enable replication and reuse at https://github.com/shangzhu-
cmu/envchemGNN.git, .

As only summary statistics were available in the literature
reports of the baseline models, we trained a feature-based
model to serve as a surrogate for the direct comparison of pre-
dictions. In each case, we reported two sets of results for
feature-based models. First, to compare with NeuralFP, we
paired ECFP features with various machine learning algor-

ithms (random forests, gradient boosting, support vector
machines, neural networks) and reported the lowest RMSEtest.
Further, we obtained an optimized feature-based model with a
combinatorial search of molecular features (ECFP, Mordred,
MACCS) and machine learning algorithms, where the best per-
forming model was measured by RMSEtest to represent the
feature-based methods. A consistent 5-fold cross-validation
split was defined for each task. Additional details on feature
generation and model selection may be found in the ESI.†

In Table 2, we report the observed performances of the two
feature-based models and two graph models. Consistent with
the previous publication,20 NeuralFP yielded better predicted
values than the ECFP-based model for most tasks. However,
the feature-based model using Mordred descriptors signifi-
cantly outperformed both the ECFP-based model and the
NeuralFP graph-based model in some tasks. For example, with
Mordred descriptors, an RMSEtest of 0.61 was observed for the
ESOL task, 48.7% and 24.7% lower than the ECFP-based
model and NeuralFP, respectively.

To further explore the potential of graph machine learning
for these tasks, we leverage the representation power of ring-
enhanced graph neural networks, O-GNN. With O-GNN, we
observed a substantial improvement in prediction accuracy on
the tasks ESOL, BCF and Clint, relative to the best-performing
feature-based models. This improvement may be attributed to
the increased capacity of the O-GNN architecture to capture
information related to the molecular structures relative to the
molecular descriptors or fingerprints employed in the baseline
models.15 On the O3-react and SO4-react tasks, the perform-
ance of O-GNN was found to be comparable to the best-per-
forming feature-based models, without the substantial gains
in RMSEtest observed on the other tasks. One plausible expla-
nation is that the datasets for the tasks O3-react and SO4-react
contained fewer observations than those for the other tasks.
We hypothesized that the O-GNN architecture may require
model training on a larger dataset to achieve optimal predic-
tive performance compared with the feature-based model
architectures.

Here and going forward, we will compare the best-perform-
ing graph machine learning methods, i.e. O-GNN, and the
best-performing feature-based methods. We denote them as

Fig. 1 Model architecture for graph neural networks. The model starts with molecular graph G and features and then applies graph convolutions
iteratively on those features to get graph-level features. The graph-level features are transformed by feed-forward neural networks to predict the
environmental properties. For the NeuralFP-based graph model, the graph only has atom features hV, G = (V, E). For O-GNN, the graph covers atom,
bond, and ring-level features (hV, hE, hR) and G = (V, E, R).
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O-GNN and ‘feature-based’ models, respectively, since they are
the most desirable options for the two categories of experimen-
ted molecular machine learning methods. To test our hypoth-
esis on the data size, we conducted a data-efficiency experi-
ment, in which a series of models was trained on randomly
sampled subsets of the ESOL, BCF and Clint datasets utilizing
both O-GNN and a feature-based architecture. The performance
of each model was evaluated against a varying training set size, by
5-fold cross-validation, to give learning curves (Fig. 2).27 These
learning curves are data-efficiency experiments that could provide
insight into the relative performance of O-GNN on the data-
limited O3-react and SO4-react tasks. Although the O-GNN models
are substantially advantaged over the feature-based models when
trained on the full-sized ESOL, BCF and Clint datasets, the loss
reduction is less substantial as we decreased the training data
size, as shown in Fig. 2. In all cases, as the training dataset drops
below approximately 1000 observations, the performance of the
O-GNN model becomes comparable to that of the feature-based
model due to the overlapping of the uncertainty bars, in line with
the size of the O3-react (759) and SO4-react (557) datasets. At the
extreme, the feature-based model outperforms the O-GNN model
on the BCF task when the training dataset drops below approxi-
mately 100 observations. This behavior may be attributed to the
contributions of chemistry knowledge introduced by the use of
human-designed molecular features, and suggests that a feature-
based model may become a more appropriate choice on data-
limited tasks.

Having established a high-level understanding of which
molecular property prediction tasks O-GNN models might be
expected to outperform feature-based models on, we next
sought to identify potential systematic trends in the models’
predictions that might explain the improved performance of
the O-GNN model on the ESOL, BCF, and Clint tasks. To this
end, we drew parity plots covering model predictions on the
test dataset for the Clint task (Fig. 3a). The predicted values
from each model exhibit the expected linear correlation to the
true values without notable systematic deviations. This result
suggests that the superior performance of the O-GNN model is
attributable to a general improvement in molecular representa-
tion, as opposed to an ability to capture novel molecular fea-
tures. Further corroborating this, a linear trend was observed
between the residual errors of the two models (Pearson corre-
lation coefficient, r = 0.40), indicating that the two models gen-
erally overestimate or underestimate the Clint of the same
molecules (Fig. 3b).

Finally, for the Clint task where we observed the most sig-
nificant performance boost by switching feature-based models
to O-GNN, we directly compared the learned molecular rep-
resentations of the O-GNN model to the molecular features
(Mordred) utilized in our surrogate feature-based model, con-
sidering the ability of each to distinguish molecules using
Clint. Principal component analysis (PCA) was used to map
the O-GNN-derived or Mordred feature vector representations
of each molecule in the Clint test dataset into a 2-dimensional

Table 2 Overview of collected datasets, model performances of graph models versus feature-based modelsa

ESOL BCF Clint O3-react SO4-react

Property Solubility Bioconcentration Intrinsic clearance Reactivity Reactivity
Size 1144 1056 4422 759 557
ECFP 1.19 (0.06) 0.85 (0.05) 0.91 (0.09) 2.26 0.74
NeuralFP 0.81 (0.01) 0.79 (0.05) 0.71 (0.04) 2.12 0.90
Best feature-based 0.61 (0.04) 0.67 (0.05) 0.86 (0.05) 2.05 0.60
O-GNN 0.36 (0.03) 0.40 (0.08) 0.34 (0.03) 2.07 0.66

a Performance reported in the format of RMSEtest after 5-fold cross-validation, except that the two reactivity datasets were trained with the splits
following the literature.11 The most accurate model is highlighted in bold.

Fig. 2 Comparson of learning curves of feature-based models and O-GNN for (a) the ESOL task, (b) the BCF task, and (c) the Clint task. The X-axis
is the number of input data points for training, while the Y-axis is the RMSEtest, reported by its mean (the line) and standard deviations (the colored
area around the line) after cross-validation. The red curve is from feature-based models and the green curve is from O-GNN results.
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chemical space and the results are plotted in Fig. 3c and d. We
scaled each dimension of the Mordred feature vector to zero
mean and unit variance since the chemistry information it
encodes may intrinsically follow distinct distributions. Graph
neural networks like O-GNN transform the discrete atom,
bond, and ring features that make up a molecule into a con-
tinuous latent representation. In Fig. 3c and d, we observe that
the first two PCA features are sufficient to cleanly arrange the
O-GNN-encoded molecules by Clint while the Mordred-
encoded molecules remain poorly distinguished. Further ana-
lysis on the ESOL task and the BCF task is included in the
ESI.†

Conclusions

In this work, we investigated the predictive power of graph
machine learning and feature-based models in order to esti-
mate the environmental properties of chemicals. We first
observed that although NeuralFP may outperform ECFP-based
models, the best feature-based model may be more desirable
when appropriate chemical features are selected, e.g. Mordred

for solubility-related prediction tasks. We therefore rec-
ommended the best-performing feature-based models as a
new baseline. Compared with baseline feature-based
approaches, O-GNN achieved state-of-the-art predictive accu-
racy on all tested tasks of solubility, bioconcentration, metab-
olism, and contaminant reactivity. By analyzing the data
efficiency of the baseline and graph neural networks, we can
conclude that O-GNN outperforms the baseline significantly
when an adequate amount of data is provided, while conven-
tional approaches reduce the prediction error in the low-data
regime. Lastly, we thoroughly evaluated the model predictions
from the two approaches based on parity plots, residual ana-
lysis and the PCA plots of Mordred descriptors and O-GNN-
extracted features. O-GNN demonstrated a higher predictive
power by distinguishing the environmental properties, e.g.
Clint, by molecular structures. We envision future works being
conducted as follows. In the low data regime, emerging ML
methods may offer additional improvement, including multi-
task learning,11 transfer learning,28,29 one-shot learning,30 and
self-supervised learning.31,32 Where more data are available,
modern graph machine learning models outperform the more
commonly used ECFP fingerprint and feature-based models

Fig. 3 Detailed analysis of the Clint task. (a) Parity plot. The black line represents complete agreement of the predicted and true values. (b)
Prediction residual plot (predicted values minus true values). The X-axis shows the residual values of feature-based models while the Y-axis is for
O-GNN. (c and d) PCA plots for (c) scaled Mordred features and (d) O-GNN-extracted features. A window with PCA1 and PCA2 in [−200, 0] and
[−200, 200] is shown for visualization purposes. Each dot is color-coded by its clearance value. The scales of principal components in (c and d)
depend on the raw feature scales before PCA, so the axes of these two plots are in different ranges.

Communication Green Chemistry

6616 | Green Chem., 2023, 25, 6612–6617 This journal is © The Royal Society of Chemistry 2023

Pu
bl

is
he

d 
on

 0
4 

A
ug

us
t 2

02
3.

 D
ow

nl
oa

de
d 

by
 F

ai
l O

pe
n 

on
 7

/2
3/

20
25

 1
0:

33
:2

5 
A

M
. 

View Article Online

https://doi.org/10.1039/d3gc01920a


and should be the method of choice where prediction accuracy
is prioritized.
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