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Machine learning-assisted screening of effective
passivation materials for P–I–N type perovskite
solar cells†
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Zhimin Feng,a Rui Zhang,a Menglong Liu,a Jiaojiao Liang, *ab Ling Zhao*c and
Juan Meng*d

The introduction of suitable passivation materials has led to a significant improvement in the power

conversion efficiency (PCE) of perovskite solar cells (PSCs) in recent years. In this paper, the relationship

between the molecular fingerprints of the passivation material and the PCE of p–i–n type PSCs is inves-

tigated using machine learning (ML). Data relating to around 100 passivation materials used to passivate

the interfaces of perovskite/electron transport layers are collected. It is found that nitrogen atoms and

acryloyl groups in the passivation material have the most influence on the PCE of p–i–n type PSCs.

Therefore, a non-fullerene material, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-

tetralcis(4-hexylphenyl)-dithieno[2,3-d:20,30-d0]-s-indaceno[1,2-b:5,6-b0]-dithiophene (ITIC), which has

both nitrogen atoms and acryloyl groups, is selected to passivate perovskite defects. Moreover,

according to photoluminescence and time-resolved photoluminescence analyses, treatment with ITIC

can enhance charge transport and diminish the defect density of the perovskite layer. Additionally, the

Urbach energy of a perovskite film treated with ITIC is reduced from 127.1 meV to 96.8 meV, which

reveals that the number of defects on the perovskite surface treated with ITIC is effectively reduced.

More importantly, the introduction of ITIC dramatically improves the crystallinity and reduces the surface

roughness of the perovskite films. Meanwhile, density-functional theory (DFT) calculations validate that

incorporating ITIC into the anti-solvent effectively passivates the uncoordinated Pb2+ ions. In addition,

compared with a non-treated PSC, the PCE of the ITIC-treated PSC shows a 20.97% enhancement.

To sum up, ML has great application potential in the field of photovoltaics for choosing effective

passivation materials in PSCs.

Introduction

Over the past decade, the remarkable progress has been made
in the field of perovskite solar cells (PSCs) due to their out-
standing optoelectronic properties, such as high charge carrier
mobility, long carrier diffusion length, tunable bandgaps,
elevated absorption coefficients, and so on.1–4 Normally, there
are two types of device structure for PSCs, n–i–p type and p–i–n

type. Compared with n–i–p type PSCs, p–i–n type PSCs have the
advantages of having simple fabrication methods, being low
cost and showing negligible hysteresis effects. It is worth noting
that PSCs with the p–i–n type structure have significant potential
for large-scale fabrication,5 and that the power conversion efficiency
(PCE) of p–i–n type PSCs has already reached 25.37%.6 However,
the fill factor (FF) and open circuit–voltage (Voc) of p–i–n type PSCs
are still lower than the theoretical Shockley–Queisser limit.7,8 As is
well-known, perovskite films fabricated using solution methods
inevitably have defects, like intrinsic point defects, grain bound-
aries and crystal surface defects.9 To reduce the defects in the
perovskite films, various passivation strategies have been proposed
and significant achievements have been achieved utilizing passiva-
tion engineering for optimizing the performance of PSCs.10 There-
fore, passivation engineering has been proven to be a useful
strategy for improving the performance of PSCs.

Various passivation materials, including metal cations,
ammonium salts, fullerene materials, non-fullerene materials
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and so on,11 have been successfully introduced into p–i–n type
PSCs to reduce perovskite defects and suppress ion migration
in the perovskite film. In particular, non-fullerene materials
can be applied as a single layer,12 an additive,13 an anti-
solvent14 or an electron transport layer (ETL)15 for passivating
the defects in perovskite films. Recently, Xinhui Luo et al.
prepared an IT-Cl film passivation layer which can effectively
suppress defects on the perovskite film in the p–i–n type device.
Furthermore, the active defect sites decreased, thus optimizing
the PCE and stability of the PSCs through the introduction of
IT-Cl into the perovskite precursor solution.16 Yaxiong Guo
et al. doped IT-4F into the anti-solvent to enhance the perfor-
mance of PSCs.17 Other non-fullerene molecules, such as ITIC-
Th,18 IDIC,19 and IDIS-Th20 were also successfully applied to
passivate the perovskite film.21 Usually, to explore the new
passivation materials for p–i–n type PSCs, expensive and
time-consuming fabrication, characterization and device opti-
mization has been undertaken. This results obtained from an
extended iterative cycle do not always lead to high performance
p–i–n type PSCs. Therefore, computer-assisted analysis of pas-
sivation materials for high performance p–i–n type PSCs is
required. Currently, several computational approaches like
machine learning (ML), density-functional theory (DFT)22 and
molecular dynamics23 are used for screening materials. Since
there is a large amount of experimental data on passivation
materials for p–i–n type PSCs, ML is available to reduce the time
and cost for discovering new effective passivation materials for
high efficiency p–i–n type PSCs.

ML that uses sufficient data has gradually become a useful
tool in various fields to make up for the disadvantages of high
cost, low efficiency and long cycles in traditional research
methods.24 In the photovoltaics field, ML is applied to make
predictions on the performance and stability of PSCs,25 screen
the cover layers for perovskite films,26 simplify the guide
framework for perovskite device fabrication,27 and optimize
the fabrication parameters and the components of the perovs-
kite films to obtain PSCs with high performance.28 In our
recent work, ML was applied to establish a prediction model
for successfully predicting the optimal third material doping
ratio and the PCE of ternary organic solar cells.29 These results
showed that ML can effectively gain insight into the complex
laws and relationships between materials and devices, and the
results of ML models are highly interpretable. Furthermore,
recently, Wu Liu et al. adopted ML to screen perovskite/hole
transport layer interface materials.30 This work demonstrated
that ML can be effectively used to investigate passivation
materials without knowledge of chemistry and resulted in
reference functional groups for the synthesis of new passivation
materials. However, guidelines for the screening of passivation
materials in p–i–n type PSCs are still lacking.

In this work, we aim to find effective passivation materials
with suitable fingerprint fragments for p–i–n type PSCs. Five
ML algorithms (k-nearest neighbor (KNN), extreme gradient
boosting (XGBoost), random forest (RF), support vector machine
(SVM), and gradient boosting decision tree (GBDT)) are proposed,
and the XGBoost was found to provide the best prediction

performance. Six types of molecular fingerprint with different
lengths have been applied to analyze 95 passivation materials,
and a total of 490 input features were obtained using Klekota–Roth
fingerprints with pretreatment. Moreover, the input features were
reasonably screened, and therefore the top 9 potential molecule
fragments were selected. Based on the results, ITIC was chosen as
the passivation material. To verify the capability of the ML model,
we carried out experiments and DFT calculations to explain the
prediction results. In the validation experiment, the non-fullerene
passivation material of ITIC dissolved in chlorobenzene (CB) was
dropped on the perovskite films as an anti-solvent, and the defects
on the perovskite film were substantially decreased. Therefore, ML
can effectively provide ideas for the selection of passivation
materials and reduce experimental costs.

Results and discussion

To screen the effective passivation materials for p–i–n type PSCs
using ML, a ML workflow was built and is shown in Fig. 1. This
involves dataset creation, feature extraction, model selection,
evaluation, and application, based on published literature data
on passivation materials for perovskite layers and ETLs in p–i–n
type PSCs. Since selecting the appropriate input features is
critical for the performance of ML models, here we chose the
perovskite component, passivation materials and PCE of unop-
timized devices as the input features, and the optimized PCE as
the output feature. The input features of the perovskite com-
ponent include the ion ratios of the monovalent cation and
halogen ions (AX), the ion ratios of the divalent metallic cation
and halogen ions (PX) in the precursor solution, and the
effective radii of the A-site cations (rA).31 The passivation
material is captured as its molecular structural formula and
is converted into the input feature by collecting the code of the

Fig. 1 The ML workflow for screening passivation materials in p–i–n
type PSCs.
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Simplified Molecular Input Line Entry System (SMILES) in a
unified way. A molecular fingerprint with a binary digital array
is used to describe the molecular structure of the passivator
materials, which can be treated as an effective input for the ML
algorithm. Here, six types of molecular fingerprints with dif-
ferent lengths generated from the ChemDes platform are used,
including E-state (79 bits), Substructure (307 bits), 2D Atom
Pairs (780 bits), Pubchem (880 bits), CDK (1024 bits), and
Klekota–Roth (4860 bits).32 To evaluate the performance of
the molecular fingerprints, five ML algorithms were applied.
The performance of the five ML algorithms are shown in Fig. S1
(ESI†) and the Klekota–Roth fingerprint (KRFP)33 was selected
for the following research. Through the above investigation,
more than 490 input features were obtained. However, these
input features were too large compared with the dataset size.
Moreover, having too many input features easily leads to
overfitting for the subsequent model. Therefore, filtering and
reduction of the dimensions for the input features was under-
taken and a correlation analysis was used to reduce the
dimensions of the input features for the ML prediction model.
To effectively improve the performance of the p–i–n type PSCs,
only input features with a correlation coefficient greater than
0.2 were considered. As a result, the primary 13 input features
were selected, and a correlation matrix between these top 13
input features and the PCE of p–i–n type PSCs was constructed,
as shown in Fig. S2 (ESI†). Detailed descriptions of the main 13
input features are displayed in Table 1.

To explore the correlations between the PCE of the p–i–n
type PSCs and the main 13 input features, five ML algorithms,
including RF, KNN, XGBoost, SVM, and GBDT, were utilized to
establish models. Fig. 2a shows a comparison of the predicted
PCE and the actual PCE based on a model made using XGBoost
algorithms. It is worth mentioning that RF, XGBoost and GBDT
are all tree-based ML algorithms, and can provide a good
overall prediction performance because they reflect the made
decisions by the vast majority of trees. Furthermore, the RF,
XGBoost and GBDT models can reasonably predict the device
performance when the PCE is in the range of 12.5% to 22%,
however, the predicted PCEs are far from the true PCE when
the PCE is lower than 12.5% or higher than 22%, showing large
errors. This is mainly due to the lack of data points in the

dataset in these ranges, thus resulting in prediction inaccuracy.
In addition, to evaluate the performance of the five ML models,
three metrics were used, the Pearson correlation coefficient (r),
the coefficient of determination (R2), and the root mean square
error (RMSE). The r value characterizes the correlation between
the true PCE and the predicted PCE, and a good prediction
model should have a r value close to 1. R2 exhibits the fitting
degree of a prediction model. When R2 is closer to 1, the model
has a good predictive ability. The RMSE reflects the error
between the predicted and true values of PCE. There is no
doubt that a low RMSE is a crucial characteristic of a good
model. As shown in Fig. 2(b–d), after taking the average value of
the evaluation index five times, it is clear that there is no
excessive difference in the evaluation parameters of all models
in either the train sets or the test sets. A comparison of the
evaluation parameters from the five prediction models shows

Table 1 Descriptions of the main used 13 input features for ML screening of passivation materials

Input feature Feature description

C-PCE The control device’s PCE without any optimization.
rA, AX, PX The effective radii of A-site cations in the precursor solution, the molar ratio of the A-site cations,

and molar ratio of Pb ions to halide ions (AX/PX), respectively.

Fragments corresponding
to the bits of the fingerprint

Fig. 2 (a) Comparison of the true PCE (performance coefficient of device)
with the predicted PCE by the XGBoost model. Here, the red dotted line
indicates where the true PCE is equal to the predicted PCE, the better the
forecast, the closer the signs are to the actual lines. (b–d) Evaluation
parameters (the average value of the evaluation parameters is taken five
times) obtained for the training set and test set using the RF, XGBoost,
GBDT, SVM, and KNN prediction models.
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that the RF, XGBoost and GBDT models perform the best.
In particular, the XGBoost model obtains the highest r
(0.893), R2 (0.791) and the lowest RMSE (1.314%) for all the test
sets. This result aligns well with the outcomes shown in Fig. 2a.

To evaluate the significance of the main 13 input features
with regards the PCE of the p–i–n type PSCs, the Shapley
Additive exPlanations (SHAP) method was employed to analyze
and identify the crucial features for driving the prediction
model. Since the tree-based ML models (RF, XGBoost, and
GBDT) show good overall performance, a Polar Chart (Fig. S3(a),
ESI†) was used to summarize the quantitative importance of each
input feature for the three tree-based models. Additionally, an
input feature importance analysis based on the XGBoost model
was conducted (Fig. S3(b), ESI†) to clearly show the primary and
secondary degree of the input features of the molecular finger-
print. Three input features (rA, AX and PX) represent the
perovskite film and the large SHAP values obtained for rA, AX
and PX indicate that improving the performance of the PSCs
should focus on the perovskite film. For example, a relative
excess of Pb2+ ions or an appropriate cation ratio would lead to
the good device performance in p–i–n type PSCs, which is
consistent with the results of a previous study.34 Aside from
rA, AX and PX, the next most relevant fingerprint is KRFP4080,
which represent the nitrogen atom (N). This finding indicates
that the more N groups there are in the passivation material,
the better the PCE of the resulting p–i–n type PSCs is.
In addition, according to the Polar Chart, the KRFP3010, which
represents acryloyl group fragments shows a secondary positive
impact on the passivation material of the PCE of p–i–n type
PSCs. The presence of acryloyl group fragments can enhance
the performance of perovskite-based devices by absorbing
electrons and reacting with the uncoordinated Pb2+ ions,
thereby effectively passivating surface defects in the perovskite
film.35 To verify the conclusions of the ML analysis, we selected
the ITIC molecule, which has a suitable amount of the
KRFP4080 and KRFP3010 fragments, as the passivation mate-
rial to verity the feasibility of the screening features. ITIC was
doped into chlorobenzene (CB), the perovskite anti-solvent.
Fig. 3 presents the molecular structure of ITIC along with the
fingerprint fragments that are most pertinent to the PCE.

To verify the feasibility of ITIC for passivating perovskite
surface defects, steady-state photoluminescence (PL) spectro-
scopy and time-resolved PL (TRPL) were employed, as pre-
sented in Fig. 4a and b. The results showed that the PL
intensity of the ITIC-treated perovskite film was significantly
lower than that of the pristine perovskite film, indicating that
the ITIC treatment improved the electron-collection efficiency
of the device. Meanwhile, the short blueshift in the PL spectra
indicates that ITIC is an effective passivation material for
reducing the surface traps of perovskite films.21,36 TRPL with
a biexponential decay function is commonly used to explore the
charge extraction ability of perovskite films. Fig. 4b shows that
when ITIC is doped into a CB anti-solvent, the decay lifetimes
of the perovskite films visibly decrease from 377 ns to 104 ns.
The treated perovskite layer displayed shortened decay life-
times, which reveals that the perovskite layer treated with ITIC
can efficiently extract photogenerated excitons. To further
investigate the perovskite surface defect inhibition ability of
ITIC, the Urbach energy of the perovskite film was evaluated
according to analysis of the slope of the Tauc plot in Fig. 4c.28

After ITIC treatment, the Urbach energy of the perovskite film
was found to have decreased from 127.1 meV to 96.8 meV. The
reduction of the Urbach energy of the perovskite film following
ITIC treatment proves that ITIC can passivate defects of the
perovskite film to reduce the interfacial recombination losses.

To investigate how ITIC affects the quality of perovskite
films, the perovskite films were analyzed using X-ray diffraction
(XRD) and atomic force microscopy (AFM) with/without ITIC
treatment. In Fig. 5a, the XRD patterns of the perovskite films
are displayed, both with and without ITIC treatment. The peaks
at 14.11, 28.31, and 31.91 are the most prominent and corre-
spond to the crystal planes (110), (220), and (310) of the MAPbI3

perovskite.5,37 The perovskite films treated with ITIC show no
diffraction shift or irrelevant diffraction peaks, which suggests
that the addition of the ITIC molecules does not impact the
perovskite lattices, and the ITIC molecules are primarily located
on the surface of the perovskite films.38 More importantly, after
adding ITIC into the CB anti-solvent, the (110) and (220)
crystallinity of perovskite film is significantly improved,
demonstrating that the introduction of ITIC improves the
perovskite crystallinity. Moreover, in order to check the pre-
ferred crystal orientation of the perovskite films with/without
ITIC treatment, the peak intensity ratios I(110)/I(310) and
I(220)/I(310) in the XRD patterns were calculated.39 The I(110)/
I(310) and I(220)/I(310) ratios of the pristine perovskite film are
1.60 and 1.32, respectively. After treatment with ITIC, I(110)/I(310)

and I(220)/I(310) increase to 2.05 and 1.71, respectively. This
reveals that the (110) and (220) crystal orientations of the
perovskite film are the preferred crystal orientations following
the introduction of ITIC. All the XRD results demonstrate that
ITIC treatment improves the crystallinity and preferred crystal-
line orientation of the perovskite films.40,41 In addition, the
AFM images of the perovskite film with/without ITIC treatment
are exhibited in Fig. 5b and c, respectively. It is clear that
with the introduction of ITIC, there is ITIC capping on the
perovskite film, which is consistent with the XRD results.

Fig. 3 ITIC molecule structure with the effective molecular fingerprint
fragments.
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Furthermore, the roughness of the perovskite film surface
decreases significantly from 11.8 nm to 8.7 nm after ITIC
treatment. This means that smoother perovskite films are
obtained after ITIC treatment, and these are more conducive
to contact with the upper ETLs and promote effective charge
transport to the ETLs.

Furthermore, in order to study the electronic characteristics
of the interface structure between the perovskite and ITIC, the
electronic properties of the ITIC molecules on the perovskite
were analyzed utilizing DFT calculations. The ESI† provides a
detailed explanation of the DFT calculation process. Fig. 6a is
the electrostatic potential (ESP) diagram of ITIC. A large amount
of negative charge was found to accumulate in regions where the
N and O atoms with lone pairs of electrons are located, indica-
ting that these charge-rich regions (blue regions) play a signifi-
cant role in defect passivation of the ITIC molecule.16 In addi-
tion, we performed DFT calculations on the ITIC molecule on the
surface of the MAPbI3 perovskite to investigate the interaction
between the ITIC molecules and the perovskite surface. It is
worth recalling that the perovskite used in the calculations has
the same composition as that used in the experimental part of
this study. Since the perovskite film usually has an exposed PbI2-
rich surface,42,43 a highly undercoordinated Pb atom on the
surface of perovskite film is constructed during modelling. The
differential charge density diagram is shown in Fig. 6(b). The
interaction between ITIC and the perovskites occurs via charge
transfer where the electron-rich N and CQO groups mainly
interact with the electron-deficient Pb2+ surface atoms.44–46

All of these indicate that the defects on the surface of the perovskite
film are effectively passivated by the interactions between ITIC and
the perovskite.47

In order to prove that the N atoms and CQO groups are
responsible for passivating the surface defects of the perovskite
film, X-ray photoelectron spectroscopy (XPS) was used to detect
the change of the surface chemical states of the perovskite film
before and after the introduction of ITIC, as shown in Fig. 7.

Fig. 4 a) Steady-state PL spectra, (b) TRPL decay traces, and (c) Tauc plots of a perovskite film and an ITIC-treated perovskite film on an ITO substrate.

Fig. 5 (a) The XRD patterns of the perovskite film and perovskite film treated with ITIC. (b and c) The AFM images for the untreated perovskite film and
the ITIC-treated perovskite film, respectively.

Fig. 6 (a) ESP diagram of the ITIC molecule, and (b) differential charge
density diagram of the perovskite surface (the section coloured in yellow
indicates the loss of electrons, while the region shaded in blue indicates
the gain of electrons).
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The characteristic Pb 4f 5/2, Pb 4f 7/2, N 1s and O 1s peaks of
the untreated perovskite film are found at 142.63, 137.87,
401.63, and 531.43 eV, respectively, while the corresponding
peaks in the ITIC-treated perovskite film are found at 142.78,
137.93, 401.73, and 531.68 eV, respectively. After ITIC treat-
ment, the characteristic Pb 4f 5/2, Pb 4f 7/2, N 1s and O 1s peaks
all shift to higher binding energies.48 This reveals that the CQO
groups and N atoms in ITIC interact with the uncoordinated
Pb2+ ions in the perovskite film, leading to the effective suppres-
sion of defects on the surface of the perovskite film.49,50 Moreover,
it is found that a new peak appeared in the ITIC-treated perovskite
film, which comes from the S atoms in ITIC, indicating that ITIC
is present on the surface of the perovskite film. This finding is
consistent with the results of the AFM study on the surface of the
ITIC-treated perovskite film.

To finish our study, a successful fabrication of a p–i–n type
PSC with an ITO/PEDOT:PSS/MAPbI3/PCBM/BCP/Ag structure
was achieved (Fig. S4a, ESI†). More information about the PSC
fabrication can be found in the ESI.† The current density–
voltage (J–V) curves of the perovskite devices, before and after
treatment with ITIC, are presented in Fig. S4b (ESI†). Of note is
that the PCE of the treated device improved by 20.97% com-
pared to the untreated PSC. The photovoltaic parameters of the
devices are shown in Table S1 (ESI†). To explore the relevance
of the fingerprint fragments obtained from the ML screening,
ITIC-M was also selected for verification, and Fig. S5 (ESI†)
displays the molecular structure of ITIC-M. Table S2 (ESI†)
shows the specific photovoltaic parameters of the device before
and after treatment with ITIC-M. When the ITIC-M concen-
tration is 2 mg mL�1, the maximum PCE of the device was
obtained. The device’s PCE following the introduction of ITIC-M
increased by 18.6% compared to the PSC without ITIC-M, con-
firming the effectiveness of the fingerprint fragments selected
using ML. Notably, the Voc of the devices treated with ITIC and
ITIC-M gain a significant enhancement. When ITIC-M was used
as a passivation material, the Voc increased from 0.95 V to 1.02 V.

In order to explore the reasons for the increase of the Voc, Kelvin
probe force microscopy (KPFM) was employed to characterize the
surface states by measuring the contact potential difference (CPD)
between the sample and the tip (Fig. 8a and b). It is clear that an
uneven potential distribution appears for the control perovskite
(Fig. 8a). However, with the incorporation of ITIC-M, the overall
CPD is slightly lowered by B0.047 mV and the spatial potential
difference is much smaller (Fig. 8b), which is beneficial for
reducing the electrical trap states.51 According to eqn (1), where
Ftip is the working function of the tip, Fsample is the working
function of the sample, and q is the electron quantity (q = �1.6 �
10�19), we can conclude that the surface working function of the
perovskite modified with ITIC-M is upshifted by B0.047 eV
(Fig. 8c and d). The upshift of the working function results in a
larger fraction of occupied versus vacant traps and a reduction in
the rate of trap-assisted recombination, which leads to the
improvement of the Voc in the device treated with ITIC-M.52

Further explanation about the enhancement of the Voc is given
in the ESI.†

CPD = (Ftip � Fsample)/q (1)

Conclusions

In this work, we collect ca. 100 different passivation materials
from the literature and screen their effectiveness as passivation
materials in p–i–n type PSCs by obtaining the highest impact
scores of the input factors from the ML model. The XGBoost
model displays the best evaluation performance with the high-
est r (0.893), R2 (0.791) and lowest RMSE (1.314%) values. The
main 13 input features are systematically analyzed by feature
importance. Based on the most relevant fingerprint fragments,
ITIC was selected as the passivation material for p–i–n type

Fig. 7 XPS spectra of (a) Pb 4f (b) N 1s (c) O 1s (d) S 2p for perovskite films
with and without ITIC treatment. Fig. 8 Surface potential images of (a) the untreated perovskite film and

(b) the ITIC-M modified perovskite film. (c) The CPD distribution of the
untreated perovskite and the ITIC-M modified perovskite, and (d) a sche-
matic diagram of the energy level the different materials.
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PSCs. The validation experiment proves that the surface defects
of p–i–n type PSCs modified with ITIC are effectively passivated.
The crystallinity and the preferred crystalline orientation of the
perovskite films was remarkably improved with the introduc-
tion of ITIC. DFT calculations also show that the lone pair
electrons in the ITIC molecules promote charge transfer and
guide the crystallization of the perovskite film. The device’s
PCE is dramatically increased following ITIC treatment by
20.97%. More importantly, ITIC-M is also successfully applied
as the passivation material in p–i–n type PSCs. All of these
results confirm that ML is a useful method to screen passiva-
tion materials for perovskite films in p–i–n type PSCs.
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