Issue 9, 2001

Abstract

This article discusses the requirements for designing single component molecular metals, derived from the results of crystal structure analyses, electrical resistivity measurements and extended Hückel tight-binding band calculations, performed on molecular conductors composed of single-component molecules of [Ni(ptdt)2] (ptdt = propylenedithiotetrathiafulvalenedithiolate) with extended TTF-ligands. The design of π molecules with a small HOMO–LUMO gap and a TTF-like skeleton is a key step to developing single-component molecular metals. A new approach is proposed to reduce HOMO–LUMO gaps. The preparation and characterization of a single-component three-dimensional molecular metal based on an analogous neutral transition metal complex molecule, [Ni(tmdt)2] (tmdt = trimethylenetetrathiafulvalenedithiolate) are reported. The details of the procedures for its synthesis are presented. Black crystals of this compound were obtained by the electrochemical method. In the crystal, which has a triclinic unit cell containing only one molecule, the planar [Ni(tmdt)2] molecules are closely packed to form the lattice plane (02[1 with combining macron]). There are intermolecular short S⋯S contacts which indicate that the system is a three-dimensional conductor. The resistivity measurements show that the system is metallic down to 0.6 K. The extended Hückel tight-binding band calculation gave three-dimensional semi-metallic Fermi surfaces. A metallic crystal was also prepared with an analogous molecule [Ni(dmdt)2] (dmdt = dimethyltetrathiafulvalenedithiolate). The formation of a single component molecular metal opens the possibilities of developing various types of unprecedented functional molecular systems such as single component molecular superconductors, ferromagnetic metals composed of single component magnetic molecules, molecular metals (or superconductors) soluble in organic solvent, etc.

Article information

Article type
Paper
Submitted
23 Mar 2001
Accepted
01 May 2001
First published
04 Jun 2001

J. Mater. Chem., 2001,11, 2078-2088

Molecular design and development of single-component molecular metals

A. Kobayashi, H. Tanaka and H. Kobayashi, J. Mater. Chem., 2001, 11, 2078 DOI: 10.1039/B102865K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements