Issue 11, 2002

Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology

Abstract

An optical sensor for the measurement of carbon dioxide in Modified Atmosphere Packaging (MAP) applications has been developed. It is based on the fluorescent pH indicator 1-hydroxypyrene-3,6,8-trisulfonate (HPTS) immobilised in a hydrophobic organically modified silica (ormosil) matrix. Cetyltrimethylammonium hydroxide was used as an internal buffer system. Fluorescence is measured in the phase domain by means of the Dual Luminophore Referencing (DLR) sensing scheme which provides many of the advantages of lifetime-based fluorometric sensors and makes it compatible with established optical oxygen sensor technology. The long-term stability of the sensor membranes has been investigated. The sensor displays 13.5 degrees phase shift between 0 and 100% CO2 with a resolution of better than 1% and a limit of detection of 0.08%. Oxygen cross-sensitivity is minimised (0.6% quenching in air) by immobilising the reference luminophore in polymer nano-beads. Cross-sensitivity towards chloride and pH was found to be negligible. Temperature effects were studied, and a linear Arrhenius correlation between ln k and 1/T was found. The sensor is stable over a period of at least seven months and its output is in excellent agreement with a standard reference method for carbon dioxide analysis.

Article information

Article type
Paper
Submitted
29 Jul 2002
Accepted
01 Oct 2002
First published
18 Oct 2002

Analyst, 2002,127, 1478-1483

Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology

C. von Bültzingslöwen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause and O. S. Wolfbeis, Analyst, 2002, 127, 1478 DOI: 10.1039/B207438A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements