Issue 3, 2003

Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices

Abstract

The high speed production of fluid segments for the highly parallelized cultivation of monoclonal cell populations was carried out by the use of microchip segmentor modules. Aqueous fluid segments, embedded in a non-miscible carrier liquid, were produced with frequencies up to 30 s−1 and showed a high homogeneity in size. This corresponds with the production of about 2.5 million samples per day. The segment volumes can be adapted between about 4 nl and 100 nl. The typical segment size for cultivation experiments is in the range between 40 nl and 80 nl. Nutrient medium can be applied instead of pure water. It is possible to aliquot a cell suspension in such a way that most of the aqueous fluid segments contain only one cell. In model experiments with four microbial species chip-produced aliquots of 60 nl, each containing one or a few cells, were incubated in Teflon capillary tubes. Rapid growth of the microcultures was observed. Cell densities were found to be as high as in conventional shake flask cultures.

Article information

Article type
Paper
Submitted
30 Jan 2003
Accepted
22 Apr 2003
First published
03 Jun 2003

Lab Chip, 2003,3, 202-207

Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices

K. Martin, T. Henkel, V. Baier, A. Grodrian, T. Schön, M. Roth, J. Michael Köhler and J. Metze, Lab Chip, 2003, 3, 202 DOI: 10.1039/B301258C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements