Electrically actuated, pressure-driven microfluidic pumps
Abstract
In order to make the lab-on-a-chip concept a reality, it is desirable to have an integrated component capable of pumping fluids through microchannels. We have developed novel, electrically actuated micropumps and have integrated them with microfluidic systems. These devices utilize the build-up of electrolysis gases to achieve pressure-driven pumping, only require small voltages (∼10 V), and have approximate dimensions of 5 cm × 3 cm × 2 cm. Furthermore, these micropumps are composed of relatively inexpensive materials, and the reversible sealability of their poly(dimethylsiloxane) body to different microfluidic arrays enables repeated uses of the same pump. Under an applied potential of 10 V, three different micropumps had average flow rates of 8–13 µL min−1 for