Issue 12, 2008

Interpenetrated three-dimensional hydrogen-bonded networks from metal–organic molecular and one- or two-dimensional polymeric motifs

Abstract

The occurrence of interpenetrated three-dimensional networks has been systematically investigated by the analysis of the crystallographic structural databases, using the program package TOPOS. After our previous reports on interpenetration observed in valence-bonded MOFs, inorganic arrays and hydrogen-bonded organic supramolecular architectures, in this paper we have focused our research on the interpenetrated 3D networks based on hydrogen-bonded metal–organic molecular (0D) and polymeric (1D and 2D) complexes from the Cambridge Structural Database. The current interest for the crystal engineering of new functional materials has prompted many research groups to adopt synthetic strategies implying the use of molecular metal complexes (0D) with suitably exo-oriented hydrogen-bond donor and acceptor groups for the assembly of extended networks. With regard to this we have examined 3D hydrogen-bonded supramolecular arrays formed by finite and infinite motifs of lower dimensionality, analyzing their topologies and looking for their entanglements. We have extracted a comprehensive list including 135 different motifs (71 assembled from 0D, 43 from 1D and 21 from 2D metal–organic motifs) showing the phenomenon of interpenetration (about two thirds not detected in the original papers). These hydrogen-bonded networks include species assembled by one or more building blocks, that are classified within the previously introduced Classes of interpenetration. It is observed that the maximum interpenetration degree is limited to 5-fold and the main (overall) topology is 412.63-pcu. An analysis of the possible relationships between the dimensionality of the building blocks and the resulting network connectivity and topology, and of some factors determining the interpenetration is also attempted, together with a comparison of the present results with those for other families of interpenetrated materials.

Graphical abstract: Interpenetrated three-dimensional hydrogen-bonded networks from metal–organic molecular and one- or two-dimensional polymeric motifs

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2008
Accepted
03 Sep 2008
First published
26 Sep 2008

CrystEngComm, 2008,10, 1822-1838

Interpenetrated three-dimensional hydrogen-bonded networks from metal–organic molecular and one- or two-dimensional polymeric motifs

I. A. Baburin, V. A. Blatov, L. Carlucci, G. Ciani and D. M. Proserpio, CrystEngComm, 2008, 10, 1822 DOI: 10.1039/B811855H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements