Issue 11, 2008

The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide

Abstract

Pd-only, Au-only and bimetallic AuPd catalysts supported on a range of supports (Al2O3, TiO2, MgO, and C) have been prepared by impregnation and tested for the hydrogenation and decomposition of hydrogen peroxide under conditions similar to those used in direct synthesis of hydrogen peroxide. Hydrogenation and decomposition are the main pathways for loss of selectivity and yield in the direct synthesis reaction, and the support is found to be a crucial parameter with respect to hydrogenation and decomposition activity. We show that by making the right choice of support for both the monometallic and bimetallic Au and Pd catalysts, it is possible to achieve very low hydrogen peroxide hydrogenation and decomposition activity, thus enhancing hydrogen peroxide productivity during synthesis. Carbon is found to be the optimal support for both monometallic Au and Pd catalysts as well as Au–Pd alloys, since carbon-supported catalysts gave the lowest hydrogenation and decomposition activities. Au-only catalysts were generally less active than Pd-only catalysts when utilizing the same support and metal loading. The addition of Au to Pd catalysts supported on TiO2 and carbon resulted in a decrease in both H2O2 hydrogenation and decomposition while the reverse effect was observed for the Al2O3 and MgO-supported catalysts. These effects are discussed in terms of the basicity of the support, and in particular the isoelectronic point of the support, which is a major factor in controlling the stability of hydrogen peroxide under reaction conditions.

Graphical abstract: The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide

Article information

Article type
Paper
Submitted
11 Jun 2008
Accepted
31 Jul 2008
First published
26 Sep 2008

Green Chem., 2008,10, 1162-1169

The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide

E. Ntainjua N., J. K. Edwards, A. F. Carley, J. A. Lopez-Sanchez, J. A. Moulijn, A. A. Herzing, C. J. Kiely and G. J. Hutchings, Green Chem., 2008, 10, 1162 DOI: 10.1039/B809881F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements