Issue 11, 2008

Adsorption of cubic liquid crystalline nanoparticles on model membranes

Abstract

The interactions of lipid based cubic liquid crystalline nanoparticles (Cubosome®) with surface supported model membranes constituted of dioleylphosphatidylcholine (DOPC) have been studied in situ by use of ellipsometry, quartz crystal microbalance with dissipation monitoring and neutron reflectivity. The systems investigated were cubic phase dispersions of glycerol monooleate (GMO) stabilised by a non-ionic block copolymer, Pluronic®F-127. The interaction between the cubic nanoparticles and the lipid bilayer is a dynamic process where the nanoparticles initially adsorb at the bilayer surface. Interfacial lipid exchange takes place where GMO is delivered into the bilayer and DOPC is extracted into the nanoparticle (34% loss). A subsequent release of the adsorbates can be triggered when the solution concentration exceeds 0.002 mg ml−1. The release shows that the attractive interaction between the cubic nanoparticles and lipid bilayer is unstable after sufficient exchange of material takes place. This instability is indicative of a local phase separation at the interface between the bilayer and the nanoparticles, which causes desorption of nanoparticles. Some particles remain attached to the bilayer even hours after the initial interaction. The ability to trigger the release of the nanoparticles through increasing the solution concentration offers exciting potential in the design of drug delivery aids.

Graphical abstract: Adsorption of cubic liquid crystalline nanoparticles on model membranes

Supplementary files

Article information

Article type
Paper
Submitted
30 Jan 2008
Accepted
01 Jul 2008
First published
12 Aug 2008

Soft Matter, 2008,4, 2267-2277

Adsorption of cubic liquid crystalline nanoparticles on model membranes

P. Vandoolaeghe, A. R. Rennie, R. A. Campbell, R. K. Thomas, F. Höök, G. Fragneto, F. Tiberg and T. Nylander, Soft Matter, 2008, 4, 2267 DOI: 10.1039/B801630E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements