We systematically investigate trends in carbon nitride structures targeting the lowest energy configuration of C3N4. Layered conformations, sp2-bonded, turn out to be more favorable than denser, sp3-bonded, networks. Among layered structures, those comprising the heptazine motif are consistently lower in energy when compared to triazine-based models. Additional decrease of energy is achieved by corrugation of the layers, driven by avoiding repulsive interactions between nitrogen lone-pairs. Consequences of such curvature are for one the necessity to approximate the lowest energy configuration of C3N4 with very large unit cells, as indicated through ab-initio molecular dynamic simulations. Secondly, curvature favors the genesis of confined structures of carbon nitride: the energy difference between “one-dimensional” nanostructures and the layered state is at least smaller for C3N4 than for pure carbon.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?