Issue 4, 2010

Kinetic target-guided synthesis

Abstract

In the last decade, various target-guided synthesis (TGS) approaches have been developed in which a target protein is actively engaged in the assembly of its own bidentate ligand from a pool of smaller reactive fragments. Although TGS is relatively less explored, it demonstrates great promise to streamline drug discovery by combining screening and synthesis into a single step. Herein, we focus on the class of kinetic TGS approaches which utilize irreversible reactions to combine two reactive fragments into the inhibitory compound. These kinetic TGS applications have been successful due to the unique combination of the slow nature of the chemical reaction combining the two fragments into a single molecule and the use of reactive fragments displaying good affinities toward one of the binding sites. So far, kinetic TGS and especially in situ click chemistry, a kinetic TGS variant using the 1,3-dipolar cycloaddition of azides and alkynes, have led to the identification of highly potent inhibitors. This tutorial review focuses on kinetic TGS approaches aside from those employing the 1,3-dipolar cycloaddition of azides and alkynes, and discusses the features and advantages of these TGS approaches in detail.

Graphical abstract: Kinetic target-guided synthesis

Article information

Article type
Tutorial Review
Submitted
23 Sep 2009
First published
02 Feb 2010

Chem. Soc. Rev., 2010,39, 1316-1324

Kinetic target-guided synthesis

X. Hu and R. Manetsch, Chem. Soc. Rev., 2010, 39, 1316 DOI: 10.1039/B904092G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements