Issue 3, 2010

Synthesis of renewable jet and diesel fuels from 2-ethyl-1-hexene

Abstract

An efficient method for the selective dimerization of the renewable feedstock, 2-ethyl-1-hexene, to a complex mixture of C16H32 hydrocarbons has been developed. To optimize the process, the activity of a variety of strongly acidic heterogeneous catalysts was investigated. Montmorillonite K-10 and sulfated zirconia readily isomerized 2-ethyl-1-hexene to a mixture of the cis- and trans isomers of 3-methyl-2-heptene and 3-methyl-3-heptene, but were inactive for the dimerization of 2-ethyl-1-hexene at temperatures up to 116 °C. In contrast, the cation exchange resins Amberlyst-15 and Nafion, readily dimerized 2-ethyl-1-hexene at elevated temperatures. For both sets of catalysts, the degree of hydration strongly affected the rate of isomerization/dimerization. After hydrogenation over PtO2 and fractional distillation, saturated dimer mixtures could be isolated in up to 90% yield. The dimers have a density of 0.78 g mL−1 and a freezing point <−60 °C, suggesting that they can be blended with renewable or conventional jet fuels, without adversely affecting the overall density and low temperature viscosity of the mixtures.

Graphical abstract: Synthesis of renewable jet and diesel fuels from 2-ethyl-1-hexene

Article information

Article type
Paper
Submitted
16 Nov 2009
Accepted
01 Feb 2010
First published
12 Feb 2010

Energy Environ. Sci., 2010,3, 352-357

Synthesis of renewable jet and diesel fuels from 2-ethyl-1-hexene

B. G. Harvey and R. L. Quintana, Energy Environ. Sci., 2010, 3, 352 DOI: 10.1039/B924004G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements