Issue 10, 2010

Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices

Abstract

A method is proposed to control the zeta potential in microchannels using electrically polarisable interfaces in direct contact with the electrolyte. The approach is based on the use of conducting layers exhibiting minimal electrochemical reactions with aqueous electrolytes but a large potential window (typically from −2 V to +2 V) enabling tuning their zeta potential without detrimental faradic reactions. SiC, Al and CNx interfaces were deposited on glass surfaces and then integrated into glass–PDMS–glass devices. The effect of the zeta potential control was monitored by measuring the electro-osmotic flow using a microfluidic Wheatstone Bridge. The experimental results are in good agreement with theoretical predictions based on a one dimensional modeling. The electro-osmotic flow control obtained at high pH values suggests that it should be possible to use such devices as Polarisable Interface Flow-Field Effect Transistors (PI-FFETs) to overcome the difficulties met with conventional metal-isolator-electrolyte systems (MIE-FFETs) for electrokinetic separation applications.

Graphical abstract: Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices

Article information

Article type
Paper
Submitted
19 Oct 2009
Accepted
12 Jan 2010
First published
11 Feb 2010

Lab Chip, 2010,10, 1245-1253

Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices

A. Plecis, J. Tazid, A. Pallandre, P. Martinhon, C. Deslouis, Y. Chen and A. M. Haghiri-Gosnet, Lab Chip, 2010, 10, 1245 DOI: 10.1039/B921808D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements