Capillary motor driven by electrowetting†
Abstract
A micro-structure supported on a droplet is subjected to capillary force and aligned dependent on its shape. If the droplet's boundary conditions at the bottom and the micro-structure are non-circular, capillary torque is exerted on the structures. The direction of torque is determined by the boundary conditions and the position of the structure. By changing the boundary conditions continuously, rotational motion of a plate was achieved. The boundary conditions of the droplet were controlled by electrowetting. We patterned