Issue 6, 2010

A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices

Abstract

The dispersion and manipulation of carbon nanotubes (CNTs) are of great importance if we are to utilise the unique properties of CNTs in a range of biological, electrical and mechanical applications. Recently, a designed amphiphilic peptide helix termed nano-1 has been shown to solubilise CNTs in aqueous solution. Furthermore, the peptide is capable of assembling these coated tubes into fibres. We use a multiscale molecular dynamics approach to study the adsorption profile of nano-1 on a CNT surface. We find that nano-1 interacts with a CNT in a preferred orientation, such that its hydrophobic surface is in contact with the tube. The adsorption profile is unchanged upon increasing the number of peptides on the CNT. Interestingly, when few peptides are adsorbed onto the CNT surface we find that the secondary structure of the peptide is unstable. However, the helical secondary structure is stabilised upon increasing the number of peptides on the CNT surface. This study sheds light on the adsorption of peptides on CNTs, and may be exploitable to enhance the selective solubilisation and manipulation of CNTs.

Graphical abstract: A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices

Supplementary files

Article information

Article type
Paper
Submitted
13 Nov 2009
Accepted
03 Mar 2010
First published
09 Apr 2010

Nanoscale, 2010,2, 967-975

A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices

E. J. Wallace, R. S. G. D'Rozario, B. M. Sanchez and M. S. P. Sansom, Nanoscale, 2010, 2, 967 DOI: 10.1039/B9NR00355J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements