Issue 6, 2010

Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods

Abstract

Colloidal semiconductor quantum rods have demonstrated many advantageous properties as light emitters such as high quantum yield, tunable emission wavelength, and polarized emission. This makes them an interesting optical gain material for laser applications. We report room-temperature gain lifetimes in core/shell CdSe/CdS quantum rods exceeding 300 ps, and show that the long gain lifetimes result from the significant reduction of Auger recombination in our quantum rods, even though the electrons are delocalized over the rod volume. We also fabricate devices by deposition of small droplets of quantum rod solution onto flat substrates. The evaporation dynamics of the droplets are governed by the coffee stain effect which leads to the formation of well defined micron-size stripes. These stripes consist of densely packed, laterally aligned quantum rods and provide optical feedback originating from the abrupt changes of refractive index at the stripe borders. We exploit the optical gain and the coffee stain mediated self-assembly and show that we can fabricate novel microlasers solely by deposition of droplets of quantum rod solutions on flat substrates.

Graphical abstract: Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods

Article information

Article type
Paper
Submitted
26 Dec 2009
Accepted
05 Jan 2010
First published
05 Feb 2010

Nanoscale, 2010,2, 931-935

Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna and G. Lanzani, Nanoscale, 2010, 2, 931 DOI: 10.1039/B9NR00434C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements